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Preface

These notes are mostly intended to bring a personal take on some of the topics
taught nowadys in the undergraduate abstract algebra (I and II) courses. We are
following in footsteps of the classic textbook of [1].
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Chapter 1

Concept of a group and examples

Any new concept must be described as a special case of a more general
concept: “ a square is a quadrilateral (general concept) with four con-
gruent sides and one right angle (special case)”. Aristotle (Criterion of
hierarchy)

1.1 Definition and motivation

In mathematics, we like to develop important deductions from a given set of as-
sumptions. These arguments are usually called theorems. Sometimes the set of
assumptions are essentially the same but the settings may appear to be different.

Example 1. For instance, let us look into the set of functions S1 := {f (n)}n∈N,
where f : R \ {−3/5} → R \ {−3/5}, defined by f(x) = −3x+2

5x+3
for every x ∈

R \ {−3/5}. Can we be more specific about the set S1? Well, let’s calculate f ◦ f .
We observe that

(f ◦ f)(x) = −
−33x+2

5x+3
+ 2

−53x+2
5x+3

+ 3
= − x

−1
= x ⇒ f ◦ f = id.

So, the set S1 = {id, f}. A function like this is called an involution (it is its
own inverse).

Example 2. Let us consider the matrix A =

[
3 2
−5 −3

]
and let us find

S2 = {An}n∈N. Can we be more specific about the set S2? If we calculate A2 we

obtain −I, where as usual I =

[
1 0
0 1

]
. Then, the set S2 = {I, A,−A,−I}.

3
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Example 3. We let T1 = {1,−1} and T2 = {1, i,−i,−1} (subsets of complex
numbers). What will make the two sets T1 and T2 similar to the sets S1 and S2? The
answer to this question involves a more precise definition of the word “similar”. The
key word here is operation, like addition, multiplication, division, etc. The operation
on S1 is the composition of functions, i.e., ◦, and the operation on S2 is the usual
multiplication of matrices. The table for each of these operations is included below:

◦ id f
id id f
f f id

· I A -I -A
I I A -I -A
A A -I -A I
-I -I -A I A
-A -A I A -I

These tables are called Cayley tables. Now we can be more precise about our
question and ask, “What natural operation can we consider on the sets T1 and T2

that will make them like S1 and S2 respectively?” What common properties can we
find in these two essentially different examples?

Example 4. Consider g : R \ {1, 2} → R \ {1, 2}, defined by f(x) = x−3
x−2

for every x ∈ R \ {1, 2}. Show that g is one-to-one and onto and the operation of

composition on the set {id, g, g2} has the following table:

◦ id g g2

id id g g2

g g g2 id
g2 g2 id g

. If we

take ω = −1+
√
3i

2
, check that a similar table can be obtained if we take the usual

multiplication of complex numbers on the set {1, ω, ω2}.
Example 5. Let us use the classical notation Z5 for the set of classes î of

integers that give remainders i when divided by 5: Z5 := {0̂, 1̂, 2̂, 3̂, 4̂}. It is natural
to define the operation î + ĵ = (̂i+ j). What is the table of this operation on Z5,
and are there any similarities in properties with the ones we have seen before? Is it
possible to generalize this to Zn ?

Example 6. For n ∈ N, the set {1, 2, 3, ..., n} is denoted by [n]. We will
denote by Sn the set of all permutations of [n], in other words, all 1-1 maps from
[n] into [n] (automatically these are also onto, so Sn is the set of all bijections on
[n]). We will write a permutation π : [n] → [n] by simply listing the ordered n-tuple
[π(1), π(2), ..., π(n)]. For n = 3, we have

S3 = {[1, 2, 3], [2, 1, 3], [1, 3, 2], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.

Since permutations are functions, we can use the operation on Sn of composition
of functions, since the composition of two 1-1 functions is also 1-1 (please check).
What is the Cayley table that we obtain with this operation on S3? If we introduce
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the notations, id = [1, 2, 3], τ = [2, 1, 3] and σ = [3, 1, 2], can the table be written
just in terms of these three permutations? For this purpose let us observe that
τ 2 = [2, 1, 3] ◦ [2, 1, 3] = [1, 2, 3] = id, σ3 = [3, 1, 2] ◦ [3, 1, 2] ◦ [3, 1, 2] = [1, 2, 3] = id,
τσ = [2, 1, 3] ◦ [3, 1, 2] = [3, 2, 1] and so (τσ)2 = 1. We observe that στ = [3, 1, 2] ◦
[2, 1, 3] = [1, 3, 2] which shows that τσ ̸= στ . We also have (στ)2 = id which implies
στ = τσ2. Hence, the Cayley table can be determined from these relations

τ 2 = id, σ3 = id, and στ = τσ2

◦ id σ σ2 τ τσ τσ2

id id σ σ2 τ τσ τσ2

σ σ σ2 id τσ2 τ τσ
σ2 σ2 id σ τσ τσ2 τ
τ τ τσ τσ2 id σ σ2

τσ τσ τσ2 τ σ2 id σ
τσ2 τσ2 τ τσ σ σ2 id

We notice here that the order of the composition is important. We say that
the operation is not commutative.

Example 7. We consider all matrices 2 × 2 with determinant non-zero and

entries from Z2 (multiplication on Zn is as before: îĵ = (̂ij), i, j = 0, 1, ..., n − 1).
Check that with the multiplication of matrices we obtain a similar structure as in
Example 6.

Example 8. Let us denote the set R \ {0, 1} by A, define the functions on
A with values on A: f1(x) = 1

x
, f2(x) = 1 − x, f3(x) = 1

1−x
, f4(x) = x−1

x
and

f5(x) = x
x−1

. Check that with the composition of functions we obtain a similar
structure as in Example 6.

Taking into account all these examples, the following concepts are arising as
important.

Definition 1.1.1. We say an operation ∗ is defined on a set A if we are given a
function f : A× A → A such that a ∗ b = f(a, b) for every a and b in A.

Definition 1.1.2. We say that (G, ∗) is a group (or G has an algebraic structure
of group with the operation ∗) if ∗ is an operation on G with the following properties:

(i) there exists an element e of G, called identity element, such that for all
g ∈ G, we have e ∗ g = g ∗ e = g

(ii) the operation ∗ is associative, i.e., for all a, b and c in G we have a∗(b∗c) =
(a ∗ b) ∗ c

(iii) for every element of G, say g, there exists an element commonly denoted
g−1 (called the inverse of g) such that g ∗ g−1 = g−1 ∗ g = e.
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If in addition, we have a ∗ b = b ∗ a for all a and b, the group is call commu-
tative or abelian.

If the group (G, ∗) has finitely many elements we say (G, ∗) is a finite group.
We usually simplify the notation (G, ∗) to G when the operation is understood. All
the examples we have seen so far are instances of finite groups. If G is finite, the
cardinality of the set G is called the order of the group G. Hence, we have seen
examples of finite groups of orders between 2 and 6. Except the group in Examples
6 and 7, all of the other groups are abelian.

Definition 1.1.3. We say that two groups (G1, ∗) and (G2, ◦) are isomorphic if
there exists a map h : G1 → G2 which a bijection and such for every a and b in G1,
we have h(a ∗ b) = h(a) ◦ h(b).

So basically, when we used the word “similar” we meant isomorphic groups.
The associative property is not easy to check and most of the time it is inherited
from the associativity of the usual addition of real numbers (which we will assume
is true) or the associativity of the multiplication of real numbers.

The proof of associativity property for the composition of functions reduces to two
lines: for all x we have

[(f ◦ g) ◦ h](x) = (f ◦ g)(h(x)) = f(g(h(x))) = f((g ◦ h)(x)) = [f ◦ (g ◦ h)](x) ⇒

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Problem 1.1.4. Show that an involution f : A → A, with A a finite set with an
odd number of elements, has a fixed point (i.e. there exists an element in A, say x,
such that f(x) = x).

Problem 1.1.5. Consider the set of ordered pairs K := {(0, 0), (0, 1), (1, 0), (1, 1)}
with the operation of addition on components modulo 2. Construct the Cayley table
for this operation on S and prove we have a group of order 4 which is not isomorphic
with the ones in Examples 2 and 3. (This group goes by the name of Klein’s group
or Z2 × Z2)

Problem 1.1.6. Let us define on A := C\{0, 1} (the set of complex numbers except 0
and 1) the following six functions id, f1(z) = 1−z, f2 =

1
z
, f3(z) =

z
z−1

, f4(z) =
z−1
z

and f5(z) =
1

1−z
, for all z ∈ A. Show that the set G := {id, f1, f2, f3, f4, f5} together

with the operation of composition of functions forms a group isomorphic to the one
in Examples 6 and 7.
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Problem 1.1.7. If we take G = (0,∞) and define the operation a ⋆ b = ab, show
that (G, ⋆) is not a group.

Problem 1.1.8. If we take G = (0,∞) and define the operation a ⋆ b = ab (usual
multiplication of positive numbers), show that (G, ⋆) is an abelian infinite group.

Problem 1.1.9. Consider R with usual operation of addition. Show that (R,+) is
an infinite abelian group isomorphic to the one in Problem 1.1.8.

Definition 1.1.10. We say that a group (G, ∗) is cyclic if there exists an element
x (called a generator) such that every element in the group, say y, can be written
as xm for some m ∈ Z, i.e., y = xm (by convention x0 = e, e is the identity element,
and x−n = (x−1)n for all n ∈ N).

Problem 1.1.11. Prove that Zn with the usual operation of addition modulo n is
an abelian finite group of order n which is also cyclic.

Problem 1.1.12. Prove that (R,+) is not cyclic but (Z,+) is.

Definition 1.1.13. Suppose a group (G, ∗) has identity element e. For an element
x ∈ G, if there exists n ∈ N such that xn = e then the smallest n with this property
is called the order of the element x.

For instance, in the symmetric group S3, τ has order 2 and σ has order 3.

1.2 Properties of groups and isomorphisms

Most of the time if the operation of the group (G, ⋆) is understood we usually drop
the symbol ⋆ and simply use multiplicative notation: a ⋆ b will be simply written as
ab.

It turns out that the identity element in a group is unique and an element
cannot have two different inverses. Let’s record and prove this next.

Proposition 1.2.1. Given a group G with identity element e then:

(i) e is unique, i.e., if e′ is an element such that e′x = xe′ = x for every x ∈ G,
then e′ = e;

(ii) if x ∈ G, then x−1 is unique, i.e., if y ∈ G has the property that yx =
xy = e then y = x−1.

PROOF (i) Since e satisfies xe = ex = x for every x ∈ G, in particular
e′e = ee′ = e′. Similarly, since e′x = xe′ = x for every x ∈ G, in particular
e′e = ee′ = e. Therefore, e′ = e′e = e.
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(ii) Because xy = yx = e then if we multiply by x−1 on the left we get
x−1(xy) = x−1e = x−1. The operation is associative and so x−1 = x−1(xy) =
(x−1x)y = ey = y which is exactly what we needed to show. □

Proposition 1.2.2. The concepts of identity element, inverse of an element, order
of an element, order of the group, cyclic, abelian, and finite/infinite, are all invariant
under isomorphisms. In other words, for example, the identity element is mapped
into the identity element by an isomorphism of groups or a cyclic group is mapped
into a cyclic group by an isomorphism of groups, etc.

The proof of this theorem is left as an exercise.

Problem 1.2.3. Show that a group G of order n is cyclic if and only if it contains
an element of order n.

Problem 1.2.4. Every cyclic group is commutative.

Problem 1.2.5. All cyclic groups of order n are isomorphic to Zn (we say, there
is essentially -up to isomorphism-only one cyclic group of order n).

Proposition 1.2.6. Given arbitrary elements a, b and c in a group G,

(i) (ab)−1 = b−1a−1

(ii) ab = ac implies b = c (left simplification/cancelation)

(iii) f : G → G, defined by f(x) = x−1 for all x is a bijection (inversion), and
it is an isomorphism iff G is commutative.

PROOF

Problem 1.2.7. A group is commutative iff for all a, b in the group (ab)2 = a2b2.

Problem 1.2.8. A group is abelian iff for all a, b, c, d and x in the group, the
following implication is true

axb = cxd ⇒ ab = cd.

abab = abab =⇒ bab = abb =⇒ ba = ab

Problem 1.2.9. A group is commutative iff for all a, b in the group (ab)−1 = a−1b−1.

Definition 1.2.10. Suppose S is a non-empty subset of a group (G, ∗) (S ⊂ G)
and ⋆ is an operation on S also. If (S, ⋆) is a group, we say in this case that S is
a subgroup of G. We usually write S ⪯ G if S is a subgroup of G. S is called
proper subgroup if S ≤ G but S ̸= G. S is called non-trivial if |S| > 1 (cardinality
is more than one).
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Problem 1.2.11. If S is a subgroup of G, then the identity element of S is the
identity element of G and the inverse of s ∈ S in S is the same as the inverse of s
in G.

Problem 1.2.12. List all the subgroups of the groups of Z12.

Proposition 1.2.13. (i) A non-empty subset S of a group G is a subgroup if and
only if S is closed under the operation in G and taking inverses (for all a and b in
S we have ab ∈ S and a−1 ∈ S).

(ii) A non-empty subset S of a group G is a subgroup if and only if for all a
and b in S we have ab−1 ∈ S.

(iii) If G is finite, then S ̸= ∅ is a subgroup of G iff it closed under under the
operation in G .

The proof of this theorem is left as an exercise.

Definition 1.2.14. Given a group (G, ∗) and x ∈ G. We denote by ⟨x⟩ the set
{xk| k ∈ Z} (using multiplicative notation, as defined in (1.1.10)). This is called
the subgroup generated by x.

Theorem 1.2.15. Show that if n ∈ N we have:

(i) for S ⪯ Zn, nontrivial, then S = ⟨d′⟩ where d′ is the smallest non-zero
element of S and d′ divides n;

(ii) if S = ⟨d⟩ = ⟨d′⟩ in Zn and d is a divisors of n, then d is equal to d′, where
d′ is the smallest non-zero element in S;

(iii) if S = ⟨d⟩ then gcd(d, n) = d′, where d′ is the smallest non-zero element
in S;

(iv) the set of subgroups of Zn is in one-to-one correspondence to the set of
divisors of n.

Proof of (ii) in Theorem 1.2.15. Clearly since d′ is the smallest non-zero
element of S and d cannot be zero, d ≥ d′. By the Division Algorithm, we must
have d = d′q + r, with 0 ≤ r < d′ and q a positive integer. If r > 0, this implies
r ∈ S, which is smaller than d′, a contradiction. Hence r = 0 and thus d = d′q.

On the other hand, d divides n which means n = dt = d′qt for some integer
t. Because d′ is in S =< d > we can write d′ = kd + nl for some integers k and l.
Substituting we have d′ = kqd′+ lqtd′ and if we divide by d′, we obtain 1 = (k+ lt)q.
This shows that q divides 1 and so q = 1. Therefore, we have d = d′. □

Proof of (iii) in Theorem 1.2.15. As in the previous proof, we can similarly
conclude that d = d′q. From (i), d′ divides n and so n = d′t for some integer t.
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Since d′ is in S, we can write d′ = du+ nv for integers u and v. Substituting we get
d′ = d′qu+ d′tv which implies 1 = qu+ tv. Hence, we have gcd(q, t) = 1 and then

gcd(n, d) = gcd(d′t, d′q) = d′ gcd(t, q) = d′.

Problem 1.2.16. Find all the generators of Zn. (Hint: Show that this set consists
of all k ∈ {1, 2, ..., n− 1} such that gcd(k, n) = 1, i.e., the greatest common divisor
of k and n is 1. )

Problem 1.2.17. The set of all generators of Zn is denoted by U(Zn) and if equipped
with the operation of multiplication modulo n we obtain a group.

Problem 1.2.18. If n = 12 show that U(Z12) is isomorphic to the group in Prob-
lem 1.1.5.

If a natural number n is written in its prime factorization

(1.1) n = pα1
1 pα2

2 · · · pαs
s

where pi are distinct primes and αi ∈ Z (i = 1, 2..., s), then the number of divisors
of n is given by the function τ , τ(n) = (α1 + 1)(α2 + 1) · · · (αs + 1). For example,
τ(100) = τ(22(52)) = 3(3) = 9. We have then 9 subgroups of Z100:

{0}, ⟨1⟩ = Z100, ⟨2⟩, ⟨4⟩, ⟨5⟩, ⟨10⟩, ⟨20⟩, ⟨25⟩, and ⟨50⟩.

Problem 1.2.19. Find how many subgroups we have in Z2016 and how many have
order 63.

Problem 1.2.20. List all the subgroups of S3 (the group of permutations of 3 ob-
jects).

Definition 1.2.21. Given a group (G, ∗) an element x ∈ G and H ⪯ G, we define
xH to be the set {xh|h ∈ H} called the left coset of H in G with respect to x.
Similarly, we define Hx to be the set {hx|h ∈ H} called the right coset of H in G
with respect to x.

Example: If the group is S3 = {id, τ, σ, τσ, στ, σ2} and H = {id, τ} we have
σH = {σ, στ} and Hσ = {σ, τσ}. Also, if we do σ2H = {σ2, σ2τ}. Because
σ2τ = τσ, we notice that H, σH and σ2H are all disjoint sets and their union is S3.

Definition 1.2.22. Given a set A and a family of subsets {Xj}j of A, we say that
this family is a partition of A if

(a) Xj ∩Xk = ∅ for all two distinct indices j and k, and

(b) A =
⋃
j

Xj.
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We observe that in the previous example, the family {H, σH, σ2H} is a partition of
S3. If we take S = ⟨σ⟩ the subgroup of S3 generated by σ, then

τS = {τ, τσ, τσ2} = {τ, τσ, στ}.

Hence, the family {S, τS} forms a partition of S3 also. This property is happening
in general.

We remind the reader that if A and B are two finite sets then

|A ∪B| = |A|+ |B| − |A ∩B|.

In particular if A and B are disjoint, then |A ∪B| = |A|+ |B|. By induction, if we
have a finite set A and a partition of A say, {Xj}j=1...m of A, then

|A| = |X1|+ |X2|+ ...+ |Xm|.

Proposition 1.2.23. Given a subgroup H of a group G then

(i) for every x and y in G, then either xH = yH or if xH ̸= yH then xH ∩
yH = ∅;

(ii) for every x and y in G, then there exists a bijection between xH and yH;

(iii) and G =
⋃
x∈G

xH.

(iv) If G is finite, the order of H divides the order of G (Lagrange’s Theorem).

Proof of (i) Proposition 1.2.23. We need to show that if xH ∩ yH ̸= ∅, then
xH = yH. So, suppose xh1 = yh2 for some h1 and h2 in H. Then, y = xh1h

−1
2

and since H is a subgroup h1h
−1
2 ∈ H. Let’s denote h1h

−1
2 by t. Then, to show

that yH ⊂ xH, we take and arbitrary h and calculate yh = (xt)h = x(th). Because
th ∈ H, we see that yx ∈ xH. Similarly, we prove that xH ⊂ yH. □

Proof of (ii) Proposition 1.2.23. Let us define f : xH → yH, by f(xh) = yh for
all h ∈ H. We need to make sure this is well-defined: xh1 = xh2 implies yh1 = yh2.
If xh1 = xh2 we can simplify x and obtain h1 = h2 and this implies yh1 = yh2. The
map f is one-to-one since yh1 = yh2 implies h1 = h2 which shows that xh1 = xh2.
The function f is onto since for every yh we can define xh and have f(xh) = yh. □

Proof of (iii) Proposition 1.2.23. This is done by double inclusion. The inclusion
⊇ is clear. The inclusion ⊆ is also true since every x is in xH because e ∈ H. □

Proof of (iv) Proposition 1.2.23. If G is finite, then H is finite. Let us denote
the cardinality of G by n. By (ii), each two left cosets xH and yH have the same
number of elements, say k (k ≥ 1 since H is not empty). By (iii), the set G \ H
is either empty or not. If it is empty then G = H and so n = k; the conclusion of
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the statement in (iv) follows. If not, we can choose an element from G \H, say x1.
Then H and x1H are not equal because x1 ∈ x1H and x1 ̸∈ H. By (i), we must have
H ∩ x1H = ∅. We can then proceed as before and look into the set G \ (H ∪ x1H).
If this set is empty, then

G = H ∪ x1H ⇒ |G| = n = |H|+ |x1H| − |H ∩ x1H| = k + k − 0,

or n = 2k and the conclusion in (iv) follows. If not, we proceed as before by choosing
an element x2 ∈ G \ (H ∪ x1H). Then x2H is different of H and x1H and so by (i),
x2H is disjoint of these two sets. We look at the set G \ (H ∪ x1H ∪ x2H). If this
set is empty, then

G = H ∪ x1H ∪ x2H ⇒ |G| = n = |H|+ |x1H|+ |x2H| = k + k + k,

or n = 3k and the conclusion in (iv) follows. If the set is not empty, we continue
this process until the sets H, x1H, x2H,..., xsH form a partition G. We know that
this process is going to continue since the cardinality of the sets xiH is not zero.
Hence (s+ 1)k = n, which proves (iv). □

Corollary 1.2.24. Given a finite group G of order n and x ∈ G, then

(i) the order of x divides the order of G: |⟨x⟩| divides n;
(ii) xn = e, e the identity element of G.

Problem 1.2.25. If G is a finite group and x ∈ G, then |⟨x⟩| is the order of x.

Definition 1.2.26. Given a natural number n, we denote by φ(n) the cardinality
of the group U(Zn).

By Problem 23, we have

(1.2) φ(n) = |{k|k ∈ {1, 2, ..., n− 1} such that gcd(k, n) = 1}|.

Clearly, if n is a prime then φ(n) = n− 1. There is a formula for this function
in terms of the prime factorization of n given in (1.1):

(1.3) φ(n) = (pα1
1 − pα1−1

1 )(pα2
2 − pα2−1

2 ) · · · (pαs
2 − pαs−1

s )
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Theorem 1.2.27. (Euler) If a and n are natural numbers such that gcd(a, n) = 1,
then aφ(n) ≡ 1 (mod n).

Corollary 1.2.28. (Fermat’s Little Theorem) If a and p are natural numbers
such that p does not divide a, then ap−1 ≡ 1 (mod p).

Let us look at an example to see how do we apply Theorem 1.2.27. If n = 2016
then φ(2016) = φ(25(32)(7)) = (25 − 24)(32 − 3)(6) = 26(32) = 576. So, any number
relatively prime with 2016, in particular any prime different of 2, 3 and 7, say p,
satisfies p576 ≡ 1 (mod 2016). Hence 2017576 ≡ 1 (mod 2016). An application of
Corollary 1.2.28 can be that 5762016 ≡ 1 (mod 2017).
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