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Abstract

We are investigating the problem of constructing integer
lattice squares, cubes and hypercubes in Euclidean spaces
of dimension less then or equal to four. We then study
the number of lattice points inside of regions with such
boundaries. For tools, we are using some results from
the theory of Ehrhart polynomials and elementary number
theory. Some preliminary results are presented and fresh
conjectures will be shared.

2



The Ehrhart’s polynomial, L(P, t) counts how many lat-

tice points are inside tP

L(P, t) = c0t
d + c1t

d−1 + ...+ cd−1t+ cd
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• d, c0, c1 and cd

• (−1)dL(P,−t) (combinatorial reciprocity theorem)
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• L(P × Q, t) = L(P, t)L(Q, t) (cross product of poly-

topes)

• Exercise: The “volume” of the fundamental domain

of the sub-lattice Zd of all solutions (x1, x2, ...xd) ∈ Zd

satisfying

a1x1 + a2x2 + ...+ adxd = 0

is equal to
√
a21 + a22 + ...+ a2d, where a1, a2, a3, ..., ad ∈ Z

and gcd(a1, a2, ..., ad) = 1.
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Sequence of almost perfect squares in two dimensions

0, 1, 4, 5, 9, 12, 13, 16, 17, 24, 25, 28, 33, 36, 37,

40, 41, 49, 52, 57, 60, 61, 64, 65, 72, 73, 81, 84, 85,

88, 96, 97, 100,..., A194154

...↗ 2015, ↘ 2016
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Given a, b with gcd(a, b) = 1, then

E2(T ) = (a2 + b2)t2 +2t+1, t ∈ N.

Problem 1: Find the number of integer solutions (x, y)

of the system

4x+3y,4y − 3x ∈ [1,99].

Problem 2: Find the number of integer solutions (x, y)

of the system

4x+5y,4y − 5x ∈ [1,81].
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Theorem: Given a, b with gcd(a, b) = 1 and t ∈ N,
then

♯{(x, y) ∈ Z2 : ax+ by, ay − bx ∈ [1, t(a2 + b2)− 1]} =

(a2 + b2)t2 − 2t+1.
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Dimension 3 (squares)

u = (a, b, c), v = (a′, b′, c′), a, b, c, a′, b′, c′ ∈ Z such that

a2 + b2 + c2 = a′2 + b′2 + c′2 = ℓ and aa′ + bb′ + cc′ = 0.

♢ gcd(a, b, c, a′, b′, c′) = 1

♢ d = gcd(a, b, c), d′ = gcd(a′, b′, c′) and

♢ D = gcd(bc′ − b′c, ac′ − a′c, ab′ − b′a)

10



Theorem: The Ehrhart polynomial of a lattice square

embedded into R3, described above and with the nota-

tion introduced is given by

E2(t) = Dt2 + (d+ d′)t+1.

Proof:

11



Examples

♡ u = (3,−3,0) and v = (1,1,4)

♡ u = 5(8,12,9) and v = 17(0,−3,4)
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ℓ2 = a2 + b2 + c2, a, b, c, ℓ ∈ Z

ℓ [a,b,c], gcd(a, b, c) = 1, 0 < a ≤ b ≤ c
1 [1,0,0]
3 [1,2,2]
5 [3,4,0]
7 [3,6,2]
9 [1, 4, 8], [7, 4, 4]

ℓ [a,b,c], gcd(a, b, c) = 1
11 [9, 2, 6], [7, 6, 6]
13 [5, 12, 0], [3, 4, 12]
15 [5, 14, 2], [11, 2, 10]
17 [15, 0, 8], [1, 12, 12], [9, 12, 8]
19 [1, 6, 18], [17, 6, 6], [15, 6, 10]
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Open Problem 1: Prove elementary that primitive

solutions of ℓ2 = a2+b2+c2, always exist (gcd(a, b, c) =

1) for every ℓ odd.
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Proposition Suppose that u′ = (a, b, c) satisfies

n1a+ n2b+ n3c = 0,

where n21+n22+n23 = ℓ2 with all variables involved being

integers. Then there exist v = (a′, b′, c′) such that ℓu′

and v define a lattice square in the plane of normal

n = (n1, n2, n3).
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Parametrization

Theorem: Every primitive solution of ℓ2 = n21+n22+n23
is, up to a permutation, given by

n1 = |2zy−2tx|, n2 = |2tz+2yx|, n3 = |z2−t2+x2−y2|,

and ℓ = x2+ y2+ z2+ t2, for some integers x, y, z and

t.

• Lagrange’s four-square theorem

• Divisibility in Gaussian Integers
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Family of squares

u := (2ty +2zx,2tz − 2yx, t2 − z2 − y2 + x2)

v := (2zy − 2tx, z2 − t2 + x2 − y2,2tz +2yx)

with normal vector

n = (−x2 + t2 − y2 + z2,−2(tx+ zy),2(ty − zx)),

|n| = x2 + y2 + z2 + t2

17



Theorem: The set of all ℓ so that
√
ℓ is the side-lengths

for an embedded square in Z3 is the set of positive

integers which are sums of two squares.

Problem: Given a point P = (x, y, z) ∈ Z3 in the plane

of equation n1x+n2y+n3z = 0 with n21+n22+n23 = ℓ2

for some ℓ ∈ N, then the number x2+y2+z2 is actually

a sum of two squares.

Example: 37x+46y +22z = 0
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Squares in R4

Oa,b,c,d =


a b c d
−b a d −c
−c −d a b
−d c −b a

 .
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Theorem: Given integer vectors u = (u1, u2, u3, u4)
and v = (v1, v2, v3, v4) such that 0 < ℓ = u21+ u22+ u23+
u24 = v21 + v22 + v23 + v24, u1v1 + u2v2 + u3v3 + u4v4 = 0,

then there exist an odd k ∈ N dividing ℓ and two vectors
w1 and w2 with integer coordinates such that

w1 = (0, α1 − β1, α2 − β2, α3 − β3) and

w2 = (α3 − β3,−α2 − β2, α1 + β1,0) with

k2 = α2
1 + α2

2 + α2
3 = β2

1 + β2
2 + β2

3,

where αi, βi are of the same parity, and u, v ∈ {w1, w2}⊥.
Moreover, we can permute the coordinates of u and v

and/or change their signs in order to have w1 and w2
linearly independent.
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Open Problem 2: Let us assume that k ∈ N is odd

such that we have the two integer representations k2 =

a2+b2+c2 = a′2+b′2+c′2, such that gcd(a, b, c, a′, b′, c′) =

1, c > c′, a ≡ a′, b ≡ b′, and c ≡ c′ (mod 2). Given the

two vectors

w1 = (0, a−a′, b−b′, c−c′) and w2 = (c−c′,−b−b′, a+a′,0)

then the lattice {w1, w2}⊥ ∩ Z4 has a fundamental do-

main of “volume” equal to k.
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Theorem: Given k odd, and two different representa-
tions

k2 = a2+b2+c2 = a′2+b′2+c′2, with gcd(a, b, c, a′, b′, c′) = 1, c′ > c,

and a, a′ both odd. Then if we set ∆12 = a′−a
2 , ∆34 =

a+a′
2 , ∆13 = −b′−b

2 , ∆24 = b+b′
2 , ∆14 = c+c′

2 , and ∆23 =
c′−c
2 , then the two dimensional space S of all vectors

[u, v, w, t] ∈ Z4, such that

(0)u+∆34v +∆24w +∆23t = 0

∆23u+∆13v +∆12w + (0)t = 0
(1)

contains a family of lattice squares.
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Family of squares in 4-dimensions

u = ±(−ta − zb + yc − xd,−tb + za − yd − xc,−tc − zd −
ya+ xb,−td+ zc+ yb+ xa)

v = ±(ax − by − cz − dt, ay + bx + ct − dz, az − bt + cx +

dy, at+ bz − cy + dx)

Open Problem 3: This gives them all.
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Quaternions

(I) H(R) is the free R-module over the symbols i, j, and

k, with 1 the multiplicative unit;

(II) i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and

ki = −ik = j.
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Open Problem 4: (I) We assume that q1 and q2 are

not right-divisible by quaternions of the form p = α+βi,

|p| > 1, then the square above is minimal.

(II) Assuming the hypothesis of (I), the fundamental

domain has “volume” equal to

V =
|q1|2|q2|2

gcd(|q1|2, |q2|2)
.

The Ehrhart polynomial is

E2(t) = gcd(|q1|2, |q2|2)t2 + (D1 +D2)t+1,

where D1 = gcd(u1, u2, u3, u4) and D2 = gcd(v1, v2, v3, v4).
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Cubes in R3

Cℓ =
1

ℓ

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 , (2)

L(Cℓ, t) =
ℓ3t3 + ℓ(d1 + d2 + d3)t

2 + (d1 + d2 + d3)t+1 or

(ℓt+1)[ℓ2t2 + (d1 + d2 + d3 − ℓ)t+1]
, t ∈ N.

(3)
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Cubes in R4


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 , (4)

L(Cℓ, t) = ℓD4t
3 +∆t2 +∆′t+1 t ∈ N, (5)

where ∆ := δ12 + δ23 + δ23 and ∆′ := D1 +D2 +D3.
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Hypercubes in R4

1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 0 −1


4t4 +8t3 +8t2 +4t+1

= (2t2 +2t+1)2

1√
3


1 1 1 0
−1 1 0 1
0 −1 1 1
−1 0 1 −1


9t4 +12t3 +6t2 +4t+1
= (t+1)(3t+1)(3t2 +1)

Hadamard Matrix

1

2


1 1 1 −1
−1 1 1 1
1 −1 1 1
1 1 −1 1


16t4 +16t3 +12t2 +4t+1

= (1+ 2t+4t2)2

Cross product

1√
5


2 1 0 0
1 −2 0 0
0 0 2 1
0 0 1 −2


25t4 +20t3 +14t2 +4t+1

= (1+ 2t+5t2)2
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1√
6


2 1 1 0
1 −2 0 1
1 0 −2 −1
0 1 −1 2


36t4+24t3+8t2+4t+1

1√
7


2 1 1 1
1 −2 −1 1
1 1 −2 −1
1 −1 1 −2


49t4+28t3+6t2+4t+1

Cross product

1

3


3 0 0 0
0 2 2 1
0 2 −1 −2
0 1 −2 2


81t4 +54t3 +18t2 +6t+1

= (3t+1)2(9t2 +1)

1

3


2 2 1 0
2 −2 0 1
1 0 −2 −2
0 1 −2 2


81t4+36t3+6t2+4t+1
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1√
10


2 2 1 1
2 −2 −1 1
1 1 −2 −2
1 −1 2 −2


100t4+40t3+16t2+4t+1

Cross Product

1√
10


3 −1 0 0
1 3 0 0
0 0 3 1
0 0 1 −3


100t4 +40t3 +24t2 +6t+1

= (10t2 +2t+1)2

1√
11


3 1 1 0
1 −3 0 1
1 0 −3 −1
0 1 −1 3


121t4+44t3+6t2+4t+1

,
1√
13


2 2 2 1
2 −2 1 −2
2 −1 −2 2
1 2 −2 −2


169t4+53t3+6t2+4t+1



Hypercubes


a −b −c −d
b a −d c
c d a −b
d −c b a

 vs


−1 3 1 4
1 0 5 −1
3 −3 0 3
−4 −3 1 1


Open Question 5: Find a good description of all

lattice hypercubes in R4.
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Ehrhart polynomial for Hypercubes

EH(ℓ)(t) = ℓ2t4 + α1t
3 + α2t

2 + α3t+1

Proposition

♣ α1 = ℓ(D1 +D2 +D3 +D4)

♣ There is a linear equation between α2 and α3 (yet to

be determined)

Open Problem 6: α3 = D1 +D2 +D3 +D4
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Open Question 7: What is happening in dimensions

bigger than 4?

Open Question 8: Do octonions clarify things for

dimensions d ∈ {5,6,7,8} ?



Thank you!
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