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Preface

“It is impossible to be a mathematician
without being a poet in soul.” Sofia

Kovalevskaya

These lecture notes were written during a period beginning in 2007 and continuing,
for my students enrolled in the Calculus classes. There are very many good calculus books
out there that have lots and lots of information and beautiful problems. We will refer to
some of them for various proofs and problems. Even though there is quite several topics
in Calculus, yet, the main concepts are just a few: limit, continuity, derivative, and the
definite integral. In these notes, we would like to take an approach that goes to the matter
of things most of the time. Applications will take problems from various texts such as:
[6] or [7]. The idea of using all transcendental functions from the start has nevertheless
good pedagogical advantages. Some of the usual definitions one needs to have are:

lnx :=

∫ x

1

1

t
dt, x > 0 and arcsinx :=

∫ x

0

1√
1− t2

dt, x ∈ [−1, 1],

and the rest of the properties of all the elementary functions follow from these definitions
once the concept of definite integral is introduced and the Fundamental Theorem of
Calculus is established . We are going to fill out the details of this approach in that
section (see Section 4.5 and Section 4.6). Also, the treatment of series and sequences is

ix
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left after the integral calculus is developed but we will try to introduce some of those
results as earlier as possible to help with the understanding of the concept of limit.

We begin with the concept of limits and introduce the so-called fundamental lim-
its. Exemplifying the concept of limit with nontrivial situations is not just a matter of
taste but also a choice that we make to show the connection with the derivatives of the
elementary functions. Continuity is briefly studied and some applications of the Interme-
diate Value Theorem are given. This is mostly a prelude for the work needed with the
definition of the derivative and the study of all differentiation rules. We then continue
with usual applications such as related rates problems, implicit differentiation, Newton’s
approximation technique and the Mean Value Theorem and its corollaries. Finally the
concept of the Riemann integral and a few techniques of integration are given after the
Fundamental Theorem of Calculus is discussed.
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Chapter 1

Limits and The Main Elementary
Functions

Quotation: “To many, mathematics is a collection of theorems. For me,
mathematics is a collection of examples; a theorem is a statement about a
collection of examples and the purpose of proving theorems is to classify and
explain the examples...” John B. Conway (Subnormal Operators, Pitman Ad-
vanced Publishing Program, 1981)

1.1 Basic Elementary Functions and Elementary Func-

tions

What kind of functions do we have as examples in calculus? Most of the textbooks are
called Calculus with early transcendentals. Perhaps they should be called Calculus with
early non-algebraic functions. In this section we are going to explain the rationale for
such titles.

In general we can divide the class of functions into two sets: algebraic and non-
algebraic. The basic algebraic functions are characterized by the following four properties

(a) the output for every real number in its domain can be obtained in a finite number
algebraic operations (addition, subtraction, multiplication or division) from the input,

(b) the rule or the algorithm of obtaining the output is the same for every value of
the input,

(c) the domain of such a function is the maximum posible within the real number
system,

(d) if all the constants involved in the rule were rational numbers, then the output
is rational for every rational input.

3



4 CHAPTER 1. LIMITS AND THE MAIN ELEMENTARY FUNCTIONS

A big class of such functions are polynomial functions. These are functions f defined
everywhere by a rule of the form

f(x) = a0x
n + a1x

n−1 + ...+ an

where a0, a1, ..., an are given and fixed real numbers and n is non-negative integer (which
is called the degree of the polynomial f). In particular we have constant functions (n = 0),
linear functions (n = 1), quadratic functions (n = 2), cubic functions (n = 3), quartic,
quintic, etc.

Another big class satisfying these properties is the set of rational functions. A
rational function g has a rule of the form

g(x) =
P (x)

Q(x)

where P and Q are polynomials with no common factors and the domain is the set of all
real numbers x such that Q(x) ̸= 0. Of a particular interest are those rational functions
for which Q has no real roots and as a result these are functions are defined for all real
numbers. For instance, a function given by the rule g(x) = x3−x

x2+1
, x ∈ R.

One may consider piecewisely defined functions by using rules that are either poly-
nomials or rational functions satisfying property (a), but such a function does not satisfy
property (b) if there are at least two rules used. One such function that actually can be
defined piecewisely is the absolute value:

(1.1) |x| =


x for x ≥ 0

−x for x < 0.

.

It can be also defined with only one rule as |x| =
√
x2, but the square-root is not

an algebraic operation. So, although this is a pretty simple function we will classify it as
non-algebraic.

What are other basic non-algebraic functions? Well, let us start with power func-
tions, such as functions h defined by a rule of the form

h(x) = xα, x ∈ D

where α is a real number that is not an integer, and D is the maximum possible domain,
which in general contains the set of positive real numbers. One of the key problems in this
rule is how do we calculate the output for let’s say a simple input. Suppose that α = 1

2
,

so we are talking about the square root function h(x) = x
1
2 , which has D = [0,∞). How

do we calculate h(2) =
√
2? This number has a long history in mathematics going back
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to the Greek school and basically the discovery of irrational numbers. The Greeks had
the false idea, for a long time, that all numbers were rational and they built every single
theorem in geometry based on that. They were very puzeled when

√
2 came around as

the diagonal of the unit square and they clearly proved to be not rational (see the next
section for their proof by infinite descent). To compute the output we know that it
requires an infinite sequence of algebraic operations. We have the following formula that
can be used to obtain square roots:

(1.2) (1 + x)
1
2 = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5 − ... |x| < 1,

but this requires an infinite number of terms and we will see the precise meaning of an
identity like (1.2) later in the calculus sequence. So most of these non-algebraic functions
are going to be defined in a formal precise way later on. That is the reason for calling
the calculus approach using early transcendental functions, and we will use this approach
too. It is true that most of the outputs are transcendental numbers (a number which is
not a zero of a polynomial with integer coefficients as opposed to those numbers which
are and they are called algebraic numbers) but for instance

√
2 is algebraic (since it is

one of the zeros of the equation x2 − 2 = 0). However, to compute exactly the decimals
of

√
2 will require an infinite non-periodic number of digits (steps).

As a result, we will assume that the basic elementary functions we will be mentionig
next are well defined and all of their properties are already established. These functions
are the exponential and logarithmic functions, the trigonometric and inverse trigonometric
functions.

Let us list a few properties of the power and exponential functions:

(1.3) (ab)α = aαbα, (aα)β = aαβ, aα+β = aαaβ, a, b > 0

and α, β are real numbers. Let us remember that we can define the power function
(x→ xα) in terms of the exponential function as

x→ eα lnx

and for that reason the maximum domain contains (0,∞). The correspoding properties
for the logarithmic functions are

(1.4) loga u =
logab u

(1− logab b)
, log aα = α log a, loga uv = loga u+ loga v,

for all a, b, u and v > 0. The first property above is nothing else but the change of base
formula, which is usually written (if we denote ab by c) as

loga u =
logc u

logc a
, for all a, c, u > 0.
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The most important properties of the trigonometric functions are

(1.5)
sin(α + β) = sinα cos β + cosα sin β,

cos(α + β) = cosα cos β − sinα sin β,

for all α, β ∈ R. These formulae are usually called the the addition trigonometric formulae,
from which all of the other trigonometric identities can be derived. For instance, one can
easily obtain the addition formula for the tangent function:

tan(α + β) =
tanα + tan β

1− tanα tan β
,

true for all α, β ∈ R such that α + β is not an odd multiple of π
2
.

The elementary function that we are going to use are then the functions obtained
from the basic ones using alll algebraic operations and in addition the composition oper-
ation. In top or that we will see examples where the piecewise elementary functions are
glued together. Let us give just two examples:

j(x) =
[
log2(x

3 + 2x) + sin(x)
] 2

ex , and k(x) =
arcsin(2x + 32x)

arctan(x) + ln(2x+ 1)
.

Since the hyperbolic functions and their inverses are less known we are going to include
them here with their domains:

� sinh(x) = ex−e−x

2
, x ∈ R,

� cosh(x) = ex+e−x

2
, x ∈ R,

To avoid circular reasoning we have to be careful and only use the results in the
development of calculus that are not related to any of the non-algebraic functions when
we are going to define them.

1.2 Sequences and their limits

The idea of a limit is closely related to the concept of infinity in mathematics, and that
has a long history going back to the Greek school of mathematics. By the way, they didn’t
like to talk about infinity at all. There are mathematicians nowadays that only accept
the discrete mathematics and stay away from the concepts that involve the continuum.
The existence itself of numbers like

√
2, π or more general of irrationals is at the heart of
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this notion. Modern mathematics has various constructions which incorporate this idea
and that is the usually referred to as the construction of the real number system (R).

Lets look at the number
√
2 which is known to be irrational and if we write it in

base 10, we can list a few decimals down
√
2 = 1.41421356237309504880168872420969807856967187537694807

3176679737990732478462107038850387534327641573 · · ·
but we will never be able to get the exact number this way since the decimals follow
some pattern that it is not periodic or easy to describe. The only exact definition is, that
whatever number is, it is positive, and its square is equal to 2. In other words, it is the
solution of

x > 0, x2 = 2.

Then, the question is “how do we work with this number then ?” Even the existence
of such a number was questioned from the day of its inception, so to speak when the
Pythagorean school calculated the diagonal of a square of sides, say a, they realized that
the diagonal (Figure1.1) BD can be expressed as

BD =
√
BC2 +DC2 =

√
2BC2 = BC

√
2.

But the big surprise was when they discovered that
√
2 was not rational (the language

they used was commensurable segments, referring to DB and DC). The reason of their
bewilderment was the belief that every number is rational, or in their words every two
segments are commensurable, i.e., they can be measured by some unit of measure in an
exact number of steps. This assumption leads one to conclude that for some, possibly
very small, unit of measurement DB = a units and DC = b units. Then the segment
BE = (a− b) and BF = b− (a− b) = 2b− a. The triangle BEF is also a right isosceles
triangle (similar to ABD) and so the diagonal BF and the side BE are smaller and still
commensurable with the same unit. One can repeat this construction over and over again
until the two segments become so small that they are smaller than the unit. Therefore,
they cannot be measured exactly with that unit. This contradiction shows that the side
of the square and its diagonal cannot be commensurable. This was the first proof of the
irrationality of

√
2 which nowadays it is called a proof by the method of (infinite) descent.

But, from a calculus point of view this method tells us more. Since the diagonal
BF = BE

√
2, we conclude that

√
2 =

DB

DC
=
a

b
=
BF

BE
=

2b− a

a− b
.

Let us reverse this instead of descent, we want to do an ascent: let us set 2b−a = m
and a−b = n and solve for a and b. We obtain b = m+n and a = n+b = n+m+n = m+2n.
Hence, we obtain

√
2 =

m

n
=
m+ 2n

m+ n
.
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x

G

F

BA

D C

Figure 1.1: The history of
√
2

Let us see what happens if we apply this ascent and start with a fraction m
n
which is just

an approximation of
√
2, say 3

2
. Then the next fraction is x2 =

3+2·2
3+2

= 7
5
≈ 1.4. Then, we

get x3 = 7+2·5
7+5

= 17
12

≈ 1.416 which is a better approximation of
√
2. In fact, let us look

at x23 =
289
144

= 2+ 1
144

and something similar can be said about x22 =
49
25

= 2− 1
25
. One can

calculate the next iteration and obtain x4 = 41
29

≈ 1.4137931 with x24 = 2 − 1
841

which is
very close to 2. The sequence of iterations continues

99

70
,
239

169
,
577

408
,
1393

985
, ...

a classical sequence in The On-Line Encyclopedia of Integer Sequences which is cataloged
by A155046. We say that {xn} is a sequence which is convergent to

√
2 and {x2n} is

convergent to 2. We notice that {xn} is a sequence of fractions and they approximate√
2 as good as we want but simply increasing the index n.

So, to answer our question, instead of working with
√
2, in practice, we simply work

with an approximation of it and it is convenient to select certain approximations. The
approximations above are optimal in the sense that the denominators are the smallest
in order to achieve a certain desired error. We have a very specific definition of the
convergence of a sequence and it may look complicated, and if it does no wonder because
it took quite a long time in the development of mathematics to arrive at it (due to
Augustin-Louis Cauchy )

Definition 1.2.1. We say that the number L is the limit of the sequence {an} if for every
ϵ > 0 there exists an index n (which depends on ϵ) such that |am − L| < ϵ for all m ≥ n.
A short way to express that {an} has limit L (or an converges to L) is lim

n→∞
an = L.

We are not going to use this definition that much but it is arguably one of the most
important concepts in calculus and it is usually the basis of checking all the properties
that limits of sequences have. Let us list the main properties and then use the definition
to prove one which is less standard (see Theorem 1.2.6):

https://oeis.org/
https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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(1.6)

1. lim
n→∞

c = c 2. lim
n→∞

xn ± yn = lim
n→∞

xn ± lim
n→∞

yn 3. lim
n→∞

cxn = c lim
n→∞

xn

4. lim
n→∞

xnyn = ( lim
n→∞

xn)( lim
n→∞

yn), 5. lim
n→∞

xn
yn

=
limn→∞ xn
limn→∞ yn

,

provided that lim
n→∞

xn and lim
n→∞

yn exist and for the Property 5, {yn} is a a sequence of

non-zero real values and lim
n→∞

yn ̸= 0. These properties are indeed properties as long the

arithmetic operations make sense. So as long as {xn} and {yn} are rational numbers and
their limits too, these are real properties. But if we take the limits to be real numbers
which are not rational, these have to turn into definitions. So, for instance

√
2 +

√
3

is the limit of the sum of two sequences of rational numbers convergent to
√
2, and

√
3

respectively. We are not going to go into these kind of details since this is part of the
construction of real numbers which can be done in several ways. We will just refer the
interested reader to the text of Walter Rudin (see [8]) for an account of the so called the
Dedekind cuts construction.

On simple corollary of the definition of convergence is the so called Squeeze Theorem
(we will see this again for functions).

Corollary 1.2.2. Given three sequences {xn}, {yn},{zn}, such that

xn ≤ yn ≤ zn, for all n ∈ N, and

lim
n→∞

xn = lim
n→∞

zn = L,

then {yn} is also convergent to L.

The same concept of convergence works for a sequence of complex numbers. The
set of complex numbers

C = {a+ bi|a, b ∈ R}
can be organized with addition ((a+ bi)+ (c+ di) = (a+ c)+ (b+ d)i) and multiplication
(a + bi)(c + di) = (ac − bd) + (ad + bc)i) that are typically taught in college algebra
together with some of their properties which are very similar to the properties of addition
and multiplication of real numbers. The only difference is that the absolute value here is
defined to be |a + bi| =

√
a2 + b2 which is nothing else but the Euclidean distance from

the origin to the point (a, b).

For a fixed complex number z = x + iy two very important sequences in calculus
are defined by

(1.7) zn =
(
1 +

z

n

)n

, and wn = 1 + z +
z2

2!
+
z3

3!
+ · · · z

n

n!
.
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It turns out that these two sequences have the same limit which is denoted by ez. We
have this way a function which has the property

ez+w = ez · ew, z, w ∈ C.

The fact that the limits in (1.10) exist and the above property takes place is usually
proved in an upper level course in analysis. This allows to introduce the transcendental
functions in a different way: ex = |ez| and cos y + sin yi = eiy, x, y ∈ R.

In order to be able to identify sequences which are convergent, especially when we
do not know what their limit migth be, there are few ingredients that one can use (they
are based on the axiomatics of the real numbers).

Theorem 1.2.3. Every monotone and bounded sequence is convergent.

A monotone sequence {xn} is a sequence which satisfies xn+1 ≤ xn for all n ∈ N
(monotone non-increasing), or xn ≤ xn+1 for all n ∈ N (monotone non-decreasing). A
bounded sequence {xn} is a sequence with the property that for some bound M ,
|xn| ≤ M for all n ∈ N. When the inequalities are strict we say the sequence is strictly
increasing or strictly decreasing (and sometime simply increasing or decreasing). For
an unbounded sequence, a particular situation appears when the sequence is said to
converge to infinity. This actually means that no matter how big M is, one can find
an index n so that xm > M for all m ≥ n.

Let us take an example here which is classic and goes back to L. Euler (Leonard
Euler). Suppose that our sequence {xn} is defined by

xn = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
.

A few terms of this sequence are listed next

{1, 5
4
,
49

36
,
205

144
,
5269

3600
,
5369

3600
,
266681

176400
,
1077749

705600
,
9778141

6350400
,
1968329

1270080
, · · · }

This sequence is clearly strictly increasing since xn+1 = xn +
1

(n+1)2
> xn for all n. To see

that it is bounded we will use the following trick (which is called telescopic sums):

xn = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
< 1 +

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n
=

1 + (
1

1
− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n− 1
− 1

n
) = 2− 1

n
< 2.

Hence, x1 < x2 < · · · < xn < 2, and so by Theorem 1.2.3 this sequence must be convergent
to something. It was not known what the limit was for a long time and L. Euler arrived by
some argument which was really clever, that the limit must be π2

6
. If we use a computer

we can see that

x100 ≈ 1.634983900..., and
π2

6
≈ 1.644934...,

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Leonhard_Euler
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so the convergence is quite slow (i.e., it takes a lot of terms to get close to the limit,
whithin a decimal point). The proof of this fact is included in the section about series
since it requires a little more knowledge in calculus. At this point it is not known where
does the following sequence converge

1 +
1

23
+

1

33
+ · · ·+ 1

n3
→ ζ(3) =?,

but its limit is denoted by ζ(3).

Exercise 1: Show that the sequence defined recursively by z1 = 1, and zn+1 =√
2 + zn, for n ≥ 1 is convergent to 2.

Another classical sequence is the one which is related to adding numbers in a ge-
ometric progression. We consider r a real number such that r ∈ [0, 1), and define the
sequence sn = 1+ r+ r2 + · · ·+ rn, n ∈ R. We prove that this sequence converges to 1

1−r
.

This is true since sn = 1−rn+1

1−r
and using Bernoulli’s Inequality (7.1) one can show that rn

is convergent to zero (left as an exercise to the reader). We usually write this as

(1.8) 1 + r + r2 + · · ·+ rn + · · · = 1

1− r
,

which is in fact true for all real r ∈ (−1, 1).

What if the sequence is not monotone? Cauchy had the following simple answer to
this question.

Theorem 1.2.4. Every Cauchy sequence is convergent. Aslo, every convergent sequence
is Cauchy.

Definition 1.2.5. A sequence {xn} is Cauchy if for every fixed ϵ > 0, we have |xm−xn| ≤
ϵ for all m,n ≥ k with k ∈ N and index which depends on ϵ.

We can see that a lot of these definitions and techniques that deal with convergence
involve inequalities. Perhaps it is not far from true that calculus, in its basic proofs, boils
down to inequalities. I would say that the “magic” of mathematics is like the magician’s
trick: it consists of three acts. The pledge, the turn, and the prestige. Using this
analogy, the calculus results are the prestige of turning inequalities into equalities. A lot
of inequalities that we are going to use are proved in Chapter 7.

A simple corollary of Theorem 1.2.4 (or simply just the definition) is that if a
sequence {xn} has the property that {x2n} and {x2n+1} are convergent to ℓ then the {xn}
is convergent to ℓ.

Using the definition of convergence and Theorem 1.2.4, to exemplify, let us prove a
property which can be generalized easily.

https://www.youtube.com/watch?v=fU0uiGAm_SY
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Theorem 1.2.6. Suppose that {an} is a sequence of non-negative rational numbers which
has the following property that a2n is convergent to L. Then, the sequence {an} is conver-
gent to some real number a and a2 = L.

Proof: We need to treat the case L = 0 separately. In this case a = 0, indeed an < ϵ is
equivalent to a2n < ϵ2 and so since we know that for some nϵ2 , the last inequality is true
for n > nϵ2 , it shows that an → 0. Hence, we may assume that L > 0.

Since L > 0 there exists q ∈ N big enough so that 1
q2
< L. Using the definition of

limit we know that a2n >
1
q2

for n > n1. Since First let us show that {an} is Cauchy. We
have

|an − am| =
|a2n − a2m|
an + am

<
|a2n − a2m|

2
q

, m, n > n1.

By triangle inequality |a2n − a2m| ≤ |a2n − L| + |L− a2m|, and so from the definition of the
convergence a2k → L we can find an n2 such that |a2n − L| ≤ ϵ/2 for all n > n2. Putting
together these facts gives

|an − am| <
qϵ

4
for all m,n > max(n1, n2). This shows that {an} is Cauchy and hence it is convergent to
a limit say a. By Property (4) in 1.6 (or by definition) we get a2 = L.

It is not hard to see that for every non-negative real number L there exists a se-
quence an of rationals such that a2n → L (using the idea of averaging or the mediant
inequality 7.0.1). Also, the number a does not depend of the sequence of rationals {an}
we choose. Then we can apply this theorem and define the “square root” function by
f(L) = limn an which has the property f(L)2 = L. The notation for this function is

√
L,

i.e., f(L) =
√
L. It is then true that limn

√
xn =

√
limn xn with essentially the same proof

as in the Theorem 1.2.6. In a similar way we can construct any root function g(x) = x
1
m

where m ∈ N. We notice that in the case m odd we can define these function on the
whole real line. So, we have a new property that we can add to those in (1.6):

lim
n→∞

(xn)
1
m = ( lim

n→∞
xn)

1
m .

Exercise 2: Show that the sequence defined earlier by x1 = 3
2
and xn+1 = xn+2

xn+1
for

n ≥ 1, is convergent to
√
2.

This sequence is known in the literature as the sequence of continued fractions
of

√
2. One may ask in connection with this continued fraction sequence “how fast” is

it convergent to
√
2? It turns out this is a little difficult to answer but in some other

situations we can use the following important tool called the Stolz–Cesàro theorem.

Theorem 1.2.7. Let {an} and {bn} be two sequences of real numbers. Assume now that
an → 0 and bn → 0 while {bn} is strictly decreasing. If

lim
n→∞

an+1 − an
bn+1 − bn

= ℓ then lim
n→∞

an
bn

= ℓ.

https://en.wikipedia.org/wiki/Continued_fraction
https://en.wikipedia.org/wiki/Stolz–Cesàro_theorem
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There is another version of this:

Theorem 1.2.8. Let {an} and {bn} be two sequences of real numbers. Assume now that
bn → ∞ while {bn} is strictly increasing. If

lim
n→∞

an+1 − an
bn+1 − bn

= ℓ then lim
n→∞

an
bn

= ℓ.

Let us work an example here to see how this theorem can be used. Suppose that we
want to compute the following limit

lim
n→∞

1k + 2k + ...+ nk

nk+1

where k ∈ N. We can apply Theorem 1.2.8, and obtain

lim
n→∞

1k + 2k + ...+ nk

nk+1
= lim

n→∞

(n+ 1)k

(n+ 1)k+1 − nk+1
=

1

k + 1
,

using the binomial formula (n+ 1)k+1 = nk+1 + (k + 1)nk + · · · and the simple fact that

if two polynomials P and Q have the same degree then P (n)
Q(n)

→ p0
q0

where p0 is the leading
coefficient of P and q0 is the leading coefficient of Q.

Exercise 3: Use Stolz–Cesàro to prove that

lim
n→∞

11 + 22 + ...+ nn

nn
= 1.

Exercise 4: Use Bernoulli’s Inequality to prove that if r ∈ [0, 1) then limn→∞ nrn = 0
and then prove that

(1.9) 1 + 2r + 3r2 + · · ·+ nrn−1 + ... =
1

(1− r)2
.

Exercise 5: Use Bernoulli’s Inequality and Squeeze Theorem to prove that if a > 0
then limn→∞ a1/n = 1

Exercise 6: Consider the recurrent sequence {xn} defined by x1 ∈ (0, 1) and xn+1 =
xn(1− xn) for n ≥ 2. Show that xn → 0 and nxn → 1.

Exercise 7: Consider the recurrent sequence {xn} defined by x1 ∈ (0, 1), λ ∈ (0, 1)
and xn+1 = xn(1− λxn) for n ≥ 2. Show that xn → 0 and find the limit of {nxn}.



14 CHAPTER 1. LIMITS AND THE MAIN ELEMENTARY FUNCTIONS

1.2.1 Limits in the geometry of curves

Historically speaking the idea of limit arived also in the geometry, first with Archimedes
who wanted to compute various areas and volumes of regions or solids that where bounded
by more complicated surfaces than planar regions. For instance, the volume of a pyramid
is such an example. One can say that Archimedes was the discoverer of the integral
calculus. Unfortunately most of his work was not known to the wide world until recently
The method of Archimedes.

Another problem in mathematics which led to the concept of limit was the con-
struction of a tangent line to a curve which is not a circle. For a circle we know that the
tangent line at a point on a circle, to this circle, is the line perpendicular to the radius
coresponding to that point. The question at this point is “how do we define the tangent
line to a curve in general and how do we construct it?” Let us look into a simple curve
which is not that much different of the circle but it was studied a lot by the ancient
Greeks: the ellipse. It is well known that the equation of a general ellipse having the
origin as its center and the semi-axes the axes of coordinates is

x2

a2
+
y2

b2
= 1.

This is an algebraic curve, i.e., a curve given implicitly by an equation of the form
P (x, y) = 0 where P is a polynomial in two variables. For example the graph of the
algebraic curve xy + x2 + xy2 + y4 = 1 is shown below

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

4

together with the tangent line at (2, 1). For an algebraic curve we can take the definition
of the tangent line be the line y = b + m(x − a) where (a, b) is a point on the curve
P (x, y) = 0 where m is determined with the property the equation P (x, b+m(x−a)) = 0
has x = a a root of multiplicity at least 2. we know that x − a has is a root because
P (a, b) = 0. Hence, we have the factorization P (x, b +m(x − a)) = (x − a)Q(x) and so
m is determined by the condition Q(a) = 0. One can work it out and figure out that the
equation of the tangent line in the above figure is 3x+5y = 11. Let us prove the following
theorem.

https://www.wilbourhall.org/pdfs/archimedes/archimedesHeiberg.pdf
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Theorem 1.2.9. The equation of the tangent line to the ellipse x2

a2
+ y2

b2
= 1 at the point

on the ellipse (u, v) is given by
ux

a2
+
vy

b2
= 1.

Indeed, let us check that the equation x2

a2
+ [v+m(x−u)]2

b2
= 1 has a double root at

x = u if and only if m = −ub2

a2v
(v ̸= 0). The equation is equivalent to

x2

a2
+
v2

b2
+

2vm(x− u)

b2
+
m2(x− u)2

b2
= 1.

But since u2

a2
+ v2

b2
= 1 we see that the equation above turns into

(x− u)(x+ u)

a2
+

2vm(x− u)

b2
+
m2(x− u)2

b2
= 0,

and after we factor out x− u, what is left is then

x+ u

a2
+

2vm

b2
+
m2(x− u)

b2
= 0.

Setting x = u gives the equation 2u
a2
+ 2vm

b2
= 0 which solved for m gives exactly m = −ub2

a2v

(v ̸= 0). If v = 0, the statement is easily seen to be true.

Excercise: Show that for a parabola y = mx2 the equation of the tangent line at
(a,ma2) is given by y = ma(2x− a).

The definition of the tangent line in general cannot be using the concept of multi-
plicity, for instance in the case of transcendental functions, like in the figure below, where
the function is given by f(x) = sinx

x2−x+1
and the tangent line is at (−1, f(−1)):

-2 -1 1 2

-0.5

0.5

The working definition that we will use a lot and it is fundamental in differential
calculus is the following:
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Definition 1.2.10. Given the graph of y = f(x) (with f and elementary function) and
(a, f(a)) a point in the interior of its domain, the tangent line at (a, f(a)) has equation
y = f(a)+m(x−a) where the slope m is the limit of the sequence (f(xn)−f(a))/(xn−a)
where xn is a sequence in the domain (except a) convergent to a.

In what follows we will see why the limit in the above definition exists and it is
independent of the sequence {xn} for all elementary functions, and how do we calculate
it using special rules which we call differentiation rules, hence the first part of calculus
sometimes named differential calculus.

Of course, the concept of limit also appears naturally in the movement of an object
through space as the idea of instantaneous velocity.

1.2.2 Exponential Function

Given a positive real number x, let us consider the sequence

(1.10) fn(x) := (1 +
x

n
)n, n ∈ N.

Using the AM-GM inequality we have[
1 · (1 + x

n
)n)

] 1
n+1

<
1 + n(1 + x

n
)

n+ 1
= 1 +

x

n+ 1
=⇒

(1 +
x

n
)n < (1 +

x

n+ 1
)n+1 =⇒ fn(x) < fn+1(x).

Hence, the sequence {fn(x)} is strictly increasing. We will show next that this
sequence is also bounded. Let m be the ceiling of x, or the smallest integer m such that
x ≤ m.

If x < 0, what we have above is still valid but we need to makes sure (1 + x
n
) > 0.

Since x
n
→ 0 we can accomplish this by taking n big enough. However, we need this

information for x = −1, so for n ≥ 2 we have fn(−1) < fn+1(−1). This is equivalent to
(n−1

n
)n < ( n

n+1
)n+1. Taking reciprocals, we obtain (1 + 1

n−1
)n > (1 + 1

n
)n+1 for all n ≥ 2.

This is saying that the sequence En = (1 + 1
n
)n+1 is strictly decreasing and it is bounded

below by zero. Therefore, it is convergent to a number which we will denote by e (in
honor of L. Euler). Since, fn(1) = En/(1 +

1
n
) this is also convergent to e. So, we get for

x ≥ 0

fn(x) ≤ fn(m) = (1+
m

n
)n < lim

n→∞
fn(m) = lim

k→∞
fkm(m) = lim

k→∞
(1+

m

km
)km = lim

k→∞
fk(1)

m = em.

For x < 0, fn(x) < fn(0) = 1, which means either way the sequence is bounded. As a
result, the sequence {fn(x)} is convergent and we will set its limits as f(x):
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(1.11) f(x) := lim
n→∞

(1 +
x

n
)n, x ∈ R.

Now, we will show some properties which will allow us to conclude that f is the
natural exponential function. The most important property is

(1.12) f(x+ y) = f(x)f(y), x, y ∈ R.

By properties of limits

f(x)f(y) = lim
n→∞

(1 +
x

n
)n(1 +

y

n
)n = lim

n→∞

[
(1 +

x

n
)(1 +

y

n
)
]n

= lim
n→∞

(
1 +

x+ y

n
+
xy

n2

)n

.

On the other hand, by definition f(x + y) = limn→∞(1 + x+y
n
)n so (1.12) follows if

we prove that

lim
n→∞

(
1 + x+y

n
+ xy

n2

)n
(1 + x+y

n
)n

= 1 ⇔

lim
n→∞

(
1 +

xy

(1 + x+y
n
)n2

)n

= 1.

We have limn→∞
xy

(1+x+y
n

)
= xy so if we let |xy|+ 1 = C we have

(1− C/n2)n ≤
(
1 +

xy

(1 + x+y
n
)n2

)n

≤ (1 + C/n2)n ⇔

fn2(−C)1/n ≤
(
1 +

xy

(1 + x+y
n
)n2

)n

≤ fn2(C)1/n < f(C)1/n,

for n big enough, say n ≥ n0. But we know that limn→∞ f(C)1/n = 1, and for the left
inequality fn2(−C)1/n > fn2

0
(−C)1/n if n ≥ n0. Using squeeze theorem the desired limit

follows.

1.2.3 Identifying f(x) with ex

We observe that (1.12) implies f(nx) = f(x)n for every x and every nN. If we let x = 1
n

we obtain f(1) = e = f(1/n)n. From here f(1/n) = e1/n. Now, letting x = 1
m
, we get

f(n/m) = f(1/m)n = (e1/m)n = en/m.
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Figure 1.2: Plot of f(x) = ex and f−1(x) = lnx, x = −10..10

So, f(r) = er for very rational r. This means f(x) extends the natural exponential
function from rationals to all real numbers.

There are other properties that determine this function uniquely. Let us show that
f is strictly increasing. If x < y then f(y) = f(y−x+x) = f(y−x)f(x) > f(x) provided
f(y − x) > 1. So, we reduced the property to the case t > 0 implies f(t) > 1. Since we
can find a big enough q ∈ N such that 1

q
< t we have fn(t) > fn(1/q) = fnq(1)

1/q. Letting

n go to infinity gives f(t) ≥ e1/q > 1.

Exercise 1: Use the same idea as above to prove that limn→∞ f(xn) = 1 for every sequence
{xn} convergent to 0.

We have f : R → (0,∞), one-to-one and the property above shows that f is also
surjective. Therefore, f is a bijection and we can refer to its inverse. As usual, from now
one we will denote these function by their standard names f(x) = ex and f−1(t) = ln t ,
t > 0.

Also, the following property is essential for the concept of derivative that follows:
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exn − 1

xn
→ 1

for every sequence {xn} convergent to 0. We will leave this for the section dealing with
continuity of the exponential function and the derivative of it. The graphs of ex and lnx
(in Mathematica Exp(x) and Log[x]) on [−10, 10] is included the Figure 1.2.

Excercise 1: Suppose we have a sequence {an} of positive real numbers such that
limn→∞

an+1

an
= ℓ then

lim
n→∞

n
√
an = ℓ

Excercise 2: Use the properties of logarithmic function to show that

lim
n→∞

1 + 1
2
+ 1

3
+ · · ·+ 1

n

lnn
= 1.

1.2.4 Other limits for e

Let us show that the number e is equal to the limit of xn = 1 + 1
1!
+ ...+ 1

n!
, n ∈ N.

Indeed, using the binomial formula we see that

(1 +
1

n
)n =

n∑
k=0

(
n

k

)
1

nk
= 1 +

n∑
k=1

n!

k!(n− k)!

1

nk
=

1 +
n∑

k=1

1

k!
(1− 1

n
) · · · (1− k − 1

n
) ≤ xn.

Clearly, xn is monotone and bounded from above by

1 + 1 +
1

2
+

1

22
+ · · · = 1 +

1

1− 1/2
= 3.

So, xn must be convergent to a limit say ℓ. Since we showed that en ≤ xn for all n, we
must have e ≤ ℓ. Using again the binomial formula we see that for some fixed m ≤ n:

(1 +
1

n
)n =

n∑
k=0

(
n

k

)
1

nk
≥ 1 +

m∑
k=1

n!

k!(n− k)!

1

nk
=

1 +
m∑
k=1

1

k!
(1− 1

n
) · · · (1− k − 1

n
) → xm as n→ ∞.

So, e ≥ xm for every m. Letting m → ∞ we obtain that e ≥ ℓ. Putting together the
information we obtained so far we have e = ℓ.
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Figure 1.3: Plot of f(x) =
(
1 + 1

x

)x
, x = 10000..300000

1.2.5 e is irrational

We are going to follow the classical proof (see [4] for an account).

1.3 Fundamental Limits of real valued function

Quotation: “The result of the mathematician’s creative work is demonstra-
tive reasoning, a proof, but the proof is discovered by plausible reasoning, by
GUESSING” –George Polya, Mathematics and Plausible Reasoning, 1953.)

The concept of limit is essential in the investigation of this mathematical subject called
Calculus. The idea of limit can be intuitively given by some important examples.

Example 1: Let us consider the function

f(x) =

(
1 +

1

x

)x

defined for all x > 0. Its graph is included in Figure 1.3.

From the graph of f we see that f(x) gets closer and closer to a horizontal line,
y = 2.71..., as x gets bigger and bigger; we formally say in a mathematical language
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that x goes or tends to infinity (symbol used for infinity is ∞). We assume this pattern
continues as x grows indefinitely. This number that appears here magically is an important
constant in mathematics and it is denoted by e. Leonhard Euler (1707-1783) was the first
mathematician who used this notation.

This number is transcendental, i.e., there is no polynomial equation with integer
coefficients that has e as one of its roots. The truncation to 20 decimals of e is

e ≈ 2.71828182845904523536 . . . .

The fact about the behavior of the function f is recorded mathematically by writing

(1.13) lim
x→∞

(
1 +

1

x

)x

= e.

This is one of the fundamental limits that connects the behavior of polynomial func-
tions with the exponential functions. In general the exponential functions are functions
of the form g(x) = ax with a ∈ (0, 1) ∪ (1,∞). If a is the number e then the function
is called the natural exponential function. In order to be able to show such a limiting
behavior for f(x) =

(
1 + 1

x

)x
, we would need a rigorous definition for the exponential

functions which is not a trivial matter at all. Think that in particular that will have to
include what it means to calculate π

√
7. (By the way, it seems incredible but we don’t

know what the unit digit of 10ππππ

is). We will come back to all these properties of limits
and prove all the properties of the elementary functions as known, when we will have the
concept of definite integral.

In the theory of limits for functions one can first introduce the limit of a particular
type of functions which are called sequences. In general by a sequence of real numbers we
just understand an infinite list a1, a2, . . ., an, . . . where ak are real numbers. As one of
the simplest examples is an = 1

n
. As n goes to ∞ then an gets closer and closer to zero.

We write this like limn→∞
1
n
= 0.

The precise meaning of the limit of a sequence is given in the following definition:

An equivalent way of writing (1.13) is

lim
n→∞

(
1 +

1

an

)an

= e for every sequence an → ∞.

Definition 1.3.1. In general, we say that a function f has limit L at x = a (which can
be or not in the domain of the function) if the sequence f(an) converges to L for every
sequence an convergent to a, which is not eventually a constant sequence (so, it is implicit
that the domain of the function allows for something like this to happen otherwise the
concept is vacuous).
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The following equivalent statement for the definition of limit of a function at a finite
point, it is usually known as the ϵ − δ definition: f has L as limit at a, if for

every ϵ > 0 there exists δ > 0 such that for every x in the domain of the

function such that 0 < |x− a| < δ, we have |f(x)− L| < ϵ.

We write this information about the limit in the form

lim
x→a

f(x) = L.

We are going to prove (1.13) later on in the course after the formal definition of
exponential functions by use of definite integrals has been introduced. At this point we
are just going to take (1.13) as fact. To avoid circular reasoning we have to avoid using
(1.13) as an important fact in the process of defining the exponential function and of
course all of its properties that lead to this fundamental limit.

There are other fundamental limits which will be introduced later. At this point
we would like to derive some other elementary limits using properties of limits and these
fundamental limits.

A list of the basic properties of limits of sequences or functions which can be derived
(except the last one since it involves the power function) from the definitions of limit is
given below:

1. lim
x→a

constant = constant

2. lim
x→a

constant f(x) = constant lim
x→a

f(x), lim
n→∞

constant an = constant lim
n→∞

an

3. lim
x→a

f(x)± g(x) = lim
x→a

f(x)± lim
x→a

g(x)

4. lim
x→a

f(x)g(x) = (lim
x→a

f(x))(lim
x→a

g(x))

5. lim
x→a

f(x)/g(x) = (lim
x→a

f(x))/(lim
x→a

g(x)) assuming that limx→a g(x) ̸= 0

6. lim
x→a

f(x)r = (lim
x→a

f(x))r if we have limx→a f(x) > 0

All these formulae are correct provided that limx→a f(x) and limx→a g(x) exist. Let us
work out an example in which these properties are used.

Example: Compute lim
x→∞

(
x+ 3

x

)x

.

Since

lim
x→∞

(
x+ 3

x

)x

= lim
x→∞

(
1 +

3

x

)x

= lim
x→∞

[(
1 +

3

x

)x
3

]3
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using Property 6, and the substitution x
3
= t (t→ ∞) we get

lim
x→∞

(
x+ 3

x

)x

=

[
lim
t→∞

(
1 +

1

t

)t
]3

= e3.

The Property 6 above can be extended to all the elementary functions. Let us
include the list of the basic elementary functions and their domain here:

1. Polynomials: p(x) = c0x
n + c1x

n−1 + · · ·+ cn−1x+ cn, Domain = R;

2. Rational: R(x) = P (x)
Q(x)

where P and Q have no common linear factors, and the

domain is {x ∈ R|Q(x) ̸= 0};

3. Exponential Functions: h(x) = ax, x ∈ R, a > 0, a ̸= 1; Domain = R;

4. Power Functions: g(x) = xr = er lnx, Domain = (0,∞), r ∈ R; In some cases the

maximum domain is bigger. For example, if r = 1
3
, we define g(x) = x

1
3 simply as

the inverse of g−1(x) = x3 whose domain and range is R. Similarly, the domain of
x→

√
x is [0,∞).

5. Trigonometric Functions: sine, cosine, tangent, cotangent, secant, cosecant;

6. Logarithmic Functions: i(x) = loga(x), Domain = (0,∞);

7. Inverse Trigonometric Functions: arcsin, arccos, arctan

Such functions may have complicated domains but whatever these domains are they
will play an important role in what follows. The Property 6 for limits can be extended
(shown to hold true) to any elementary function as above, say F , in the following way:

(1.14) lim
x→a

F (f(x)) = F (lim
x→a

f(x)),

whenever limx→a f(x) is in the domain of F and the composition F (f(x)) makes sense.
The reason for which (1.14) happens is in fact a more general (at least formally) property:

(1.15) lim
x→b
x∈D

F (x) = F (b), b ∈ D = Domain(F ),

which is called continuity of F at the point b. In other words we have the following
theorem:
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Theorem 1.3.2. Every elementary function is continuous at each point in its domain of
definition.

As an application of this theorem let us derive another fundamental limit which is
equivalent to (1.13) and it is an intimate connection between polynomials and the natural
logarithmic function:

(1.16) lim
x→0

ln(1 + x)

x
= 1.

Since ln is continuous at the point e we obtain

lim
x→∞

ln(1 +
1

x
)x = ln e = 1, or lim

x→∞
x ln(1 +

1

x
) = 1,

and if we substitute y = 1
x
→ 0 we get limy→0

ln(1+y)
y

= 1 which is nothing else but (1.16).

Of course, if one assumes that (1.16) is true, the first fundamental limit (1.13), follows.

The third fundamental limit can be derived from (1.16) and it intimately connects the
polynomials with the exponentials:

(1.17) lim
x→0

ax − 1

x
= ln a, a > 0, a ̸= 1.

Indeed, if we set y = loga(1 + x) = ln(1+x)
ln a

→ 0 as x → 0 (continuity of ln at the
point 1) we obtain x = ay − 1 and so (1.16) becomes

lim
y→0

y

ay − 1
= lim

x→0

ln(1 + x)

x ln a
=

1

ln a
,

which proves that we must have (1.17).

Next, let us derive the fourth fundamental limit which intimately connects the polynomials
with the power functions:

(1.18) lim
x→0

(1 + x)α − 1

x
= α, α ∈ R.

Using the fact that the logarithmic function is the inverse of the exponential function,
i.e. a = eln a, we have

lim
x→0

(1 + x)α − 1

x
= lim

x→0

eln(1+x)α − 1

x
= lim

x→0

eα ln(1+x) − 1

α ln(1 + x)

α ln(1 + x)

x
.
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Because t = α ln(1 + x) → 0 as x→ 0 and using (1.16) and (1.17) we obtain

lim
x→0

(1 + x)α − 1

x
= lim

y→0

ey − 1

y
lim
x→0

α ln(1 + x)

x
= α.

Let us work an exercise in which (1.18) plays an important role.

Exercise: Calculate the limit lim
x→1

3
√
x− 1

x− 1
.

Solution: Changing the variable of the limit to y = x− 1 we see that while x→ 1
then y → 0. Hence the limit becomes

lim
x→1

3
√
x− 1

x− 1
= lim

y→0

(1 + y)1/3 − 1

y
=

1

3
.

The fifth fundamental limit which cannot be derived from the previous ones is one
that intimately connects the polynomials with trigonometric functions:

(1.19) lim
x→0

sinx

x
= 1.

We are going to show this property when the trigonometric functions will be defined
rigorously with the concept of definite integral.

A few simple corollaries of (1.19) are worth mentioning. First, for every a ̸= 0, a
simple substitution gives

(1.20) lim
x→0

sin ax

x
= lim

t→0

sin t

t/a
= a.

Also, using the double angle formula 1 − cos(α) = 2 sin(α/2)2 leads us into another
important trigonometric limit:

(1.21) lim
x→0

1− cos ax

x2
= lim

x→0

2 sin2 ax/2

x2
= 2(a/2)2 =

a2

2
.

Finally, another important tool used in computing limits is the so called Squeeze
Theorem.

Theorem 1.3.3. Given three functions f , g and h defined on a domain D which has a as
limiting point (there exist a non-constant sequence in D, which is convergent to a), and

f(x) ≤ g(x) ≤ h(x), for all x ∈ D \ {a}.

If limx→a f(x) = limx→a h(x) = L then limx→a g(x) = L.
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This theorem can be easily shown directly from the definition of the limit (1.3.1).
One needs to use the following inequality which is left as an exercise: for all a, b and c
such that a ≤ b ≤ c and for every x ∈ R we have

(1.22) |x− b| ≤ |x− a|+ |x− c|.

Proof Sketch: We let ϵ > 0 be arbitrary and choose δ1 > 0 such that |f(x)− L| < ϵ/2
for all x ∈ D such that 0 < |x − a| < δ1. Also, because limx→a h(x) = L, we can find
δ2 > 0 such that |h(x)−L| < ϵ/2 for all x ∈ D such that 0 < |x− a| < δ2. Therefore, for
x ∈ D such that 0 < |x− a| < δ := min{δ1, δ2}, using 1.22, we have

|g(x)− L| ≤ |f(x)− L|+ |h(x)− L| < ϵ/2 + ϵ/2 = ϵ.

Here is an example of how this theorem can be used to show that limx→∞
sinx
x

= 0. We
observe that − 1

x
≤ sinx

x
≤ 1

x
for x > 0. Also, since limx→∞

1
x
= 0, the claim follows by

applying the theorem to f(x) = − 1
x
, g(x) = sinx

x
and h(x) = 1

x
.

Finally some important limits, which deal with the end behavior of elementary are listed
next:

(1.23) lim
x→∞

xα

ax
= 0, a > 1, and α ∈ R,

(1.24) lim
x→∞

lnx

xα
= 0, α ∈ (0,∞),

(1.25) lim
x→∞

arctanx =
π

2
, and lim

x→−∞
arctanx = −π

2
.

The last two limits follow from the properties of the function f(x) = tan x and the
limits limx→π

2
− f(x) = ∞ and limx→π

2
+ f(x) = −∞.

Let us prove next (1.23) using the Squeeze Theorem. We need the so called Bernoulli’s
Inequality:

(1.26) (1 + ϵ)n ≥ 1 + nϵ,

for every ϵ > −1 and n ∈ N.
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One can prove this by induction on n. It is clear for n = 1 and for the induction step,

(1 + ϵ)n+1 ≥ (1 + nϵ)(1 + ϵ) = 1 + (n+ 1)ϵ+ nϵ2 ≥ 1 + (n+ 1)ϵ.

Then for every a > 1 we can write a = (1 + ϵ)2 for some ϵ > 0. Then

0 ≤ n

an
≤ 1

(1 + ϵ)n
n

1 + nϵ
<

1

(1 + ϵ)n
1

ϵ
→ 0.

This shows that n
an

→ 0 as n→ ∞. Hence,

0 ≤ x

ax
≤ ⌊x⌋+ 1

a⌊x⌋
→ 0, as x→ ∞,

where ⌊x⌋ is the greatest integer part of x, x > 0. This shows (1.23) for α = 1. Then for
α arbitrary we observe that it is true for α ≤ 0 and for α > 0 we have

lim
x→∞

xα

ax
= lim

x→∞

(
x

(a1/α)x

)α

= 0,

because we still have a1/α > 1. Using a substitution, x = et, one reduces (1.24) to (1.23).

1.3.1 Problems

In these exercises assume that all the fundamental limits discussed earlier are true, and
all the properties of limits take place including the theorem about elementary functions.
Although all of these limits can be computed easily later, by L’Hospital’s rule, look at
these limits as a simple opportunity to brush up on your algebra skills.

1. Calculate the following limit

lim
x→∞

(
2x+ 3

2x− 1

)3x−1

2. Show that

lim
x→0

1

x
ln

(
1 + 2x

1− 3x

)
= 5.

3. Use the fundamental limits to obtain the equality

lim
x→0

4x − 2x

x
= ln 2.

4. Find the limit
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lim
x→1

x5 − 1

x7 − 1
.

5. Use the last fundamental limit to prove that

lim
x→0

tan 6x

tan 3x
= 2.

6. Use any of the fundamental limits and properties of limits to show that

lim
x→0

4x − 2x+1 + 1

x2
= (ln 2)2.

7. Prove that

lim
x→0

3
√
1 + 3x− 3

√
1− 3x

x
= 2.

8. Use a simple substitution to calculate

lim
x→1

x2 − 3x+ 2

x− 1
.

9. Use any methods to find

lim
x→4

√
x+ 5− 3√
x− 2

.

10. (More challenging one) Assuming that the limit

L = lim
x→0

ex − 1− x

x2
,

exists, prove that L = 1
2
.

11. Determine the following limits numerically and analytically:

(a) lim
x→∞

(
2x+ 3

2x− 3

)x/2

(b) lim
x→0

cos 3x− cos 5x

x2
(c) lim

x→1

5
√
x− 1

7
√
x− 1

12. Determine if the following function is continuous or not. If it is not continuous find
the points of discontinuity.
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f(x) =


(x− 2)(x− 3) if x ≥ 0

(sin 2x)(sin 3x)

x2
if x < 0

.

13. Find all values of a such that the following function is continuous:

h(x) =


ax

3 + a2x
if x ≥ 1

4
√

|x| − 1

x− 1
if x < 1

.

14. Use the Intermediate Value Theorem to show that the following equation has a
solution in the specified interval:

ex = 2− 2x in (0, 1).

15. Use Squeeze Theorem to show that following limit is equal to 1:

lim
x→∞

(
x

x+ cosx

) 1
x

16. Show that for all a, b and c such that a ≤ b ≤ c and for every x ∈ R we have

|x− b| ≤ |x− a|+ |x− c|.

1.3.2 Solutions

1. We substitute 2x+3
2x−1

= 1 + t. We observe that since x → ∞, then 1
2x−1

→ 0. Hence

t = 2x+3
2x−1

− 1 = 2x+3−2x+1
2x−1

= 4
2x−1

→ 0. Solving for x, we obtain x = 1
2
+ 2

t
. Then the limit

given can be written in terms of t

lim
x→∞

(
2x+ 3

2x− 1

)3x−1

= lim
t→0

(1 + t)1/2+6/t = lim
t→0

(1 + t)1/2lim
t→0

(
(1 + t)1/t

)6
= 1(e6) = e6.

We used several of the property of the limits listed on page 6, including a variation of the
first fundamental limit (1.13): lim

t→0
(1 + t)1/t = e.
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2. We use the property of the logarithmic functions, ln(a/b) = ln a− ln b, (a, b > 0), and
separate the given limit into two limits which have basically the same nature:

L = lim
x→0

1

x
ln

(
1 + 2x

1− 3x

)
= lim

x→0

ln(1 + 2x)

x
− lim

x→0

ln 1− 3x

x
.

So, because for every real number k ̸= 0, we have by 1.16

lim
x→0

ln(1 + kx)

x
= lim

t→0

ln(1 + t)

t/k
= lim

t→0
k
ln(1 + t)

t
= k,

we see that the required limit is L = 2− (−3) = 5.

3. Since we know that lim
x→0

ax−1
x

= ln a, we have

lim
x→0

4x − 2x

x
= lim

x→0

2x(2x − 1)

x
=

(
lim
x→0

2x
)
lim
x→0

2x − 1

x
= 20 ln 2 = ln 2.

4. We use the fundamental limit lim
t→0

(1+t)a−1
t

= a and with the substitution t = x−1 → 0,

we get

lim
x→1

x5 − 1

x7 − 1
= lim

t→0

(1 + t)5 − 1

(1 + t)7 − 1
=

lim
t→0

(1+t)5−1
t

lim
t→0

(1+t)7−1
t

=
5

7
.

5. Let us first observe that

lim
x→0

tan ax

x
= lim

x→0

sin ax

x
lim
x→0

1

cos ax
= 1.

Hence, we have

lim
x→0

tan 6x

tan 3x
=

lim
x→0

tan 6x
x

lim
x→0

tan 3x
x

=
6

3
= 2.

6. Let us observe that 4x − 2x+1 + 1 = 22x − 2(2x) + 1 = (2x − 1)2, and so

lim
x→0

(
2x − 1

x

)2

= (ln 2)2.

7. We observe that for a ̸= 0, we have
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lim
t→0

(1 + at)α − 1

t
= lim

x→0

(1 + x)α − 1

x/a
= aα.

So, the required limit L can be calculated as shown below

L = lim
x→0

3
√
1 + 3x− 1

x
− lim

x→0

3
√
1− 3x− 1

x
= 3(1/3)− (−3)(1/3) = 2.

8. We substitute x− 1 = t, and observe that

lim
x→1

x2 − 3x+ 2

x− 1
= lim

t→0

(1 + t)2 − 3(1 + t) + 2

t
= lim

t→0
t− 1 = −1.

9. Let’s multiply by the conjugate top and bottom and get rid of the differences of square
roots by using the formula (

√
a− b)(

√
a+ b) = a− b2:

lim
x→4

√
x+ 5− 3√
x− 2

= lim
x→4

(x− 4)(
√
x+ 2)

(x− 4)(
√
x+ 5 + 3)

= lim
x→4

√
x+ 2√

x+ 5 + 3
= 4/6 = 2/3.

10. Assuming that the limit, let us first observe that if we change the variable x → 2x,
we have

L = lim
x→0

e2x − 1− (2x)

4x2
,

and so

4L = lim
x→0

e2x − 1− (2x)

x2
.

On the other hand, using a fundamental limit, we have

1 = lim
x→0

(ex − 1)2

x2
= lim

x→0

e2x − 2ex + 1

x2
.

Subtracting the two equalities we get

4L− 1 = lim
x→0

2ex − 2x− 2

x2
= 2L.

From here we solve for L: 2L = 1 or L = 1/2.

11. We will demonstrate similar problems:
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(a) lim
x→0

(
3x+ 1

1 + 2x

)1/x

(b) lim
x→0

cos 5x− cos 7x

x2
(c) lim

x→1

3
√
x− 1

7
√
x− 1

(a) Let f(x) =
(
3x+1
1+2x

) 1
x for x ∈ (−1/2, 1/2). Some of the values of f at inputs that

are getting closer to zero are tabulated next:
f(0.1) 2.226491601
f(-0.1) 3.801189052
f(0.01) 2.652804911
f(-0.01) 2.788907699
f(0.001) 2.711511762
f(-0.001) 2.725103316

It seems to be the case that the limit is ≈ 2.71. To do this algebraically we use the first
fundamental limit:

lim
x→0

(
3x+ 1

1 + 2x

)1/x

= lim
x→0

(
1 +

x

1 + 2x

)1/x

= lim
x→0

[(
1 +

1

(1 + 2x)/x

) 1+2x
x

] x
1+2x

1
x

= e
lim
x→0

1

1 + 2x = e

so

lim
x→∞

(
3x+ 1

1 + 2x

)2x

= e .

(b) If g(x) =
cos 5x− cos 7x

x2
if x ̸= 0. Some of the values of g for inputs getting closer

and closer to zero are included in the next table:
g(0.1) 11.27403746
g(0.01) 11.99260100
g(0.001) 11.99990000

We can guess that this limit must be equal to 36. This is indeed the case since

lim
x→0

cos 3x− cos 9x

x2
= lim

x→0

2 sinx sin 6x

x2
= lim

x→0
2
sinx

x
lim
x→0

6
sin 6x

6x
= 12.

Hence lim
x→0

cos 5x− cos 7x

x2
= 12 .

(c) Finally if h(x) =
3
√
x− 1

7
√
x− 1

for every real number x ̸= 1. Some of the values of g around

zero are shown below:
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h(0.9) 2.310133871
h(1.1) 2.354690647
h(0.99) 2.331101813
h(1.01) 2.335546124

So it is reasonable to conclude that the limit of this function at x = 1 is 2.3 = 7
3
. This is

true since if we make the change of variable x = (1 + t)7 we see that t→ 0 and

lim
x→1

3
√
x− 1

7
√
x− 1

= lim
t→0

(1 + t)
7
3 − 1

t
=

7

3
.

Therefore, lim
x→1

3
√
x− 1

7
√
x− 1

=
7

3
.

12. We observe that there are not problems with the continuity at points a other than
a = 0. Clearly limx→0+ f(x) = 6 = f(0) and

lim
x→0−

f(x) = lim
x→0−

(sin 2x)(sin 3x)

x2
= lim

x→0−

sin 2x

x
lim
x→0−

sin 3x

x
= 2(3) = 6.

13. We observe that h is continuous everywhere except possibly at x = 1. Next, we see
that limx→1+ h(x) = h(1) = a/(3 + a2). Also, we get

lim
x→1−

h(x) = lim
t→0

(1 + t)1/4 − 1

t
= 1/4.

In order for h to be continuous, we need a/(3 + a2) = 1/4 or a2 − 4a + 3 = 0. This
quadratic has two solutions: a = 1 and a = 3. Therefore, h is continuous if and only if
a ∈ {1, 3}.

14. We consider f(x) = ex−2+2x defined on [0, 1]. This is a continuous function, being
elementary. We notice that f(0) = e0− 2 = 1− 2 = −1 < 0 and f(1) = e− 2+2 = e > 0.
Thus, we can apply IVT to f on [0, 1] and y = 0. We conclude that there exists x0 ∈ (0, 1)
such that f(x0) = 0. This is equivalent to ex0 = 2− 2x0.

15. Since −1 ≤ cosx ≤ 1 we see that, for x > 1, we have

(
x

x− 1

) 1
x

≤
(

x

x+ cosx

) 1
x

≤
(

x

x+ 1

) 1
x

But limx→∞
(

x
x−1

)
= limx→∞

(
1

1−1/x

)
= 1 and similarly limx→∞

(
x

x+1

)
= limx→∞

(
1

1+1/x

)
=

1. Hence
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lim
x→∞

(
x

x− 1

) 1
x

= 10 = 1 and lim
x→∞

(
x

x+ 1

) 1
x

= 10 = 1.

This forces

lim
x→∞

(
x

x+ cosx

) 1
x

= 1.

16. There are four possibilities: x ∈ (−∞, a], x ∈ (a, b], x ∈ (b, c] and x ∈ (c,∞).

Case I So, for x ∈ (−∞, a] the inequality becomes equivalent to b− x ≤ a− x+ c− x or
x ≤ a+ c− b. This is true since x ≤ a and c− b ≥ 0.

Case II, x ∈ (a, b] The inequality is the same as b− x+ x− a+ c− x. This is the same
as b ≤ (x− a) + c which is true because b ≤ c and x− a ≥ 0. Similarly, one can analyze
the other two cases.

Fundamental Limits

(1.27) lim
x→0

(1 + x)
1
x = e

(1.28) lim
x→0

ln(1 + x)

x
= 1

(1.29) lim
x→0

ax − 1

x
= ln a, a ̸= 0

(1.30) lim
x→0

(1 + x)α − 1

x
= α, x ∈ R

(1.31) lim
x→0

sin(x)

x
= 1

(1.32) lim
x→0

1− cos(αx)

x2
=
α2

2
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1.4 Continuity and piecewise functions

Calculating limits from the fundamental limits may turn out to be a real challenge We
have seen in Theorem 1.3.2 that every elementary functions is continuous on its domain
of definition.

A new class of functions which appears often in applications we will refer to it here
as piecewise functions. This set of functions is important also within mathematics as a
theoretical tool since it provides a good pool for examples and counterexamples.

Let us consider such an example:

f(x) =



sin 2x
x

if x > 0,

2 if x = 0,

1−ln(1−2x)
x

if x < 0

.

This function is continuous at every point different of zero since the rules for each
branch are elementary functions well defined on those intervals. At x = 0 we have

lim
x→0+

1− ln(1− 2x)

x
= 2 lim

x→0

ln(1− 2x)− 1

−2x
= 2

and

lim
x→0−

sin 2x

x
= 2 lim

x→0

sin 2x

2x
= 2.

Hence we conclude that limx→0 f(x) = 2 = f(0) and so this function is continuous.

On the other hand if we simply change the definition of f to

∧
f(x) =



sin 2x
x

if x > 0,

3 if x = 0,

1−ln(1−2x)
x

if x < 0

.

In this case clearly
∧
f is not continuous, we say it is discontinuous, and since the

limit exists at this point we call such a point a removable discontinuity.

A more interesting example is the following function which does not have a limit at
zero:
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g(x) =



sin( 1
x
) if x > 0,

2 if x = 0,

x sin( 1
x
) if x < 0

,

although the left hand side limit exists since |x sin( 1
x
)| ≤ |x| → 0. This forces limx→0− g(x) =

0. This principle is known as the squeeze theorem. So, g is discontinuous at x = 0 and
such a discontinuity is called an essential discontinuity.

An important theorem that is used often in mathematics is the Intermediate Value
Theorem:

Theorem 1.4.1. (IVT) Consider a continuous function on a closed interval [a, b] and a
number c between f(a) and f(b). Then there exists a value x ∈ (a, b) such that f(x) = c.

The proof of this theorem is beyond the scope of the course so we invite the interested
students read a proof of it from a real analysis textbook.

As an application let us work the following problem:

If a and b are positive numbers, prove that the equation

(1.33)
a

x3 + 2x2 − 1
+

b

x3 + x− 2
= 0

has at least one solution in the interval (−1, 1).

The equation is equivalent to a(x3 + x− 2) + b(x3 + 2x2 − 1) = 0. So, if we denote
by p(x) = a(x3 + x− 2) + b(x3 + 2x2 − 1) we notice that, p is continuous on [−1, 1] and
p(−1) = −4a < 0 and p(1) = 2b > 0. Hence 0 is in between the two values of p at the
endpoints of the interval [−1, 1] and so, by the Intermediate Value Theorem, there must
be a c ∈ (−1, 1) such that p(c) = 0. This means c is a solution of the original equation.

A related problem and a more precise statement about the possible zeroes of (1.33)
will be two show that the equation (1.33) has at least one solution in the interval (α, 1)

where α =
√
5−1
2

≈ 0.6180 (reciprocal of the so called golden ratio number).

Indeed, the polynomial above can be written in the form p(x) = a(x−1)(x2+x+2)+
b(x+1)(x2+x−1) and α is a root of the polynomial x2+x−1. Hence p(α) = a(α−1)3 < 0
and p(1) = 2b > 0. Therefore the same argument applies for the interval (α, 1).

1.4.1 Problems

1. Use the IVT to prove that every continuous function f : [a, b] → [a, b] has a fixed
point, i.e. a point c ∈ [a, b] such that f(c) = c.
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Figure 1.4: Graph of f in Problem 2.

2. Consider the function f defined in the following way:

f(x) =


xe−

1
| sin x| , if x ̸= kπ, k ∈ Z,

0 if x = kπ, k ∈ Z.

Show that f is continuous on R.

3. Prove that every continuous function on [a, b] which is one-to-one, must be strictly
monotone.

(A one-to-one function is a function with the property that f(u) = f(v) can happen
only if u = v and a strictly monotone function is either strictly increasing or strictly
decreasing. A strictly increasing function is a function with the property that for every u
and v in its domain such that u < v, then f(u) < f(v).)

1.4.2 Solutions to 1.4.1 Problems

1. We consider the function g(x) = f(x) − x and observe that g is continuous on [a, b],
g(a) = f(a) − a ≥ 0 and g(b) = f(b) − b ≤ 0. If either g(a) = 0 or g(b) = 0, then we
found a fixed point: a or b. If g(a) > 0 and g(b) < 0 then we can use IVT for c = 0 and
obtain a point x0 ∈ (a, b) such that g(x0) = 0. Hence, x0 is a fixed point for f .

2. First let us observe show that we don’t have a problem with the continuity except
for points of the form a = kπ. In order to prove the continuity at a we need to show
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that limx→a f(x) = 0. Since | sinx| → 0 when x → a, we conclude that limx→a f(x) =
a limt→∞ 1/et = 0.

1.4.3 Sample Test 1 and Solutions

1. Determine the following limits numerically and analytically:

(a) lim
x→0

1 + cos x− 2 cos 2x

x2
(b) lim

x→1

3
√
x− 1

x7 − 1

Solutions: (a) If g(x) =
1 + cos x− 2 cos 2x

x2
if x ̸= 0. Some of the values of g for inputs

getting closer and closer to zero are included in the next table:

g(0.1) 3.4871
g(0.01) 3.4998
g(0.001) 3.4999

We can guess that this limit must be equal to 7/2. We split the limit in two:

lim
x→0

1 + cos x− 2 cos 2x

x2
= lim

x→0

2− 2 cos 2x

x2
− lim

x→0

1− cos(x)

x2
=

2 lim
x→0

1− cos 2x

x2
− lim

x→0

1− cos(x)

x2
= 2(4/2)− 1/2 = 7/2 = 7/2 ,

(b) Finally if g(x) =
3
√
x− 1

x7 − 1
for every real number x ̸= 1. Some of the values of g around

1 are shown below:
g(0.9) 0.066
h(1.1) 0.034
h(0.99) 0.049
h(1.01) 0.046

If we make the change of variables x = (1 + t)(1/7), we see that t→ 0 and

lim
x→1

3
√
x− 1

x7 − 1
= lim

t→0

(1 + t)
1
21 − 1

t
=

1

21
≈ 0.047619.

Therefore, lim
x→1

3
√
x− 1

x7 − 1
=

1

21
.

2. Determine if the following function is continuous or not. If it is not continuous find
the points of discontinuity.
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f(x) =


x
π

if x ≥ π/2

cosx

π/2− x
if x < π/2

.

Solution: The function is defined everywhere and it is continuous at every point other
than π/2 since it is elementary defined there. For x = π/2 we observe that

f(π/2) = 1/2, lim
x↘π/2

f(x) = 1/2, lim
x↗π/2

f(x) = lim
x↗π/2

cosx

π/2− x
= lim

t→0

cos(π/2− t)

t
.

Since cos(π/2− t) = cos(π/2) cos t+ sin(π/2) sin t = sin t we see that

lim
x↗π/2

f(x) = lim
t→0

sin t

t
= 1.

So, the function is not continuous at x = π/2.

The graph of f is shown next:
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.

We can see that there is only one point of discontinuity, namely, at x = π/2.

3. Use the Intermediate Value Theorem to show that the following equation has a solution
in the specified interval:
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2 cosx = 1 + sinx in (0,
π

2
).

Solution: We consider the function g(x) = 2 cosx − 1 − sinx which is defined for all
x ∈ [0, π

2
]. This function is continuous since it is in terms of elementary trigonometric

functions whose domain of definition is the whole real line. Because g(0) = 1 > 0 and
g(π

2
) = −2 > 0, we can apply IVT to g on [0, π

2
] and for y = 0, to conclude that there

exists a c ∈ (0, π
2
) such that g(c) = 0. This implies that the equation

2 cosx = 1 + sinx

has a solution in (0, π
2
). It turns out that this solution is arctan(3/4) ≈ 0.644.

The graph of the two functions, x→ 2 cosx and x→ 1+ sinx, on the interval [0, π
2
]

is shown below:
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Clearly the point of their intersection, which is unique, is the value given by the
IVT. 4. Calculate the derivatives of the following functions:

(a) g(x) = x2 − 3x3 + x
√
x+ 1, x ∈ [0,∞)

(b) h(x) = x3 lnx− x2ex, x ∈ R

(c) l(x) = 23 − 32x , x ∈ R

(d) m(x) = (ln x)3, x > 0
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(e) n(x) = (2x+ 1)3, x ∈ R.

Solution: (a) First we write g(x) = x2 − 3x3 + x3/2 + 1 and so using the power rule, we

obtain g′(x) = 2x− 9x2 +
3

2

√
x for all x ∈ [0,∞).

(b) The product rule gives h′(x) = 3x2 ln(x) + x2 − 2xex − x2ex for all x > 0.

(c) Using the derivative of bx, we have l′(x) = 0 − (32x)′ = −(9x)′ = −9x ln 9 =

−2(32x) ln 3 , x ∈ R.

(d) We know that (fg)′ = f ′g + fg′, and then (f 2)′ = f ′f + ff ′ = 2ff ′. Therefore,
(f 3)′ = (f 2f)′ = 2ff ′f + f 2f ′ = 2f 2f ′ + f 2f ′ = 3f 2f ′ which gives us the formula

(f 3)′ = 3f 2f ′. In particular, m′(x) = 3(ln x)2(1/x) =
3(lnx)2

x
for all x > 0.

(e) Similarly, n′(x) = 3(2x+ 1)2(2x+ 1)′ = 6(2x+ 1)2 , x ∈ R.

One could just rewrite n(x) = 8x3 + 12x2 + 6x + 1 and differentiate term by term

using the power rule: n′(x) = 24x2 + 24x+ 6 , which is the same answer as before but in

the foiled form:

6(2x+ 1)2 = 6(4x2 + 4x+ 1) = 24x2 + 24x+ 6.
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Chapter 2

Derivatives and the rules of
differentiation

2.1 Derivatives of the basic elementary functions

Quotation: A great discovery solves a great problem but there is a grain of
discovery in the solution of any problem. Your problem may be modest; but
if it challenges your curiosity and brings into play inventive faculties, and if
you solve it by your own means, you may experience the tension and enjoy the
triumph of discovery. –George Polya

The concept of differentiation is nevertheless the most important in calculus. We
are going to start with the geometric question that leads to this notion. Consider one of
the important curves that one plays with in geometry: the circle. Taking a point on this
circle one can draw several lines passing through this point but only one will intersect
the circle at only that particular point. We usually call this line the tangent line to the
circle at the given point. We know that such a line can be obtained by just taking the
perpendicular to the corresponding radius of the point where the tangent is to be drawn.

What if we have some other types of curves? First, how do we even define the
concept of tangent line and how do we compute it’s equation?

Let us start with the curve of equation y = f(x) and suppose we take P = (a, f(a))
a point on this curve. For another point close to P , say Q = (x, f(x)) we can calculate
the slope of the secant line PQ:

f(x)− f(a)

x− a
.

Intuitively, when x → a, this slope tends to have the limiting value of the slope
of the “tangent” line to the curve at this point. This is actually what we will take by

43
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definition to be the tangent line at (a, f(a)) to y = f(x):

y − f(a) = f ′(a)(x− a)

where f ′(a) = limx→a
f(x)−f(a)

x−a
if this last limit exists. We call this limit the derivative of

f at a. Other notations used for this limit are: df
dx
(a) or df

dx
|x=a. We may also look at this

calculation as a function if we define f ′ (the derivative of f) as being

(2.1) f ′(x) = lim
t→x

f(t)− f(x)

t− x

for all x ∈ Domain(f ′) := {x| all real x where the limit (2.1) exists}.
We can say that calculus is the study of the operation f → f ′ as applied mainly to

elementary functions. There are quite a few surprises and interesting stories about this
“simple” transformation.

One of the beginning stories is that each of the fundamental limits, that we have
identified in Chapter I, represents the derivative of one of the basic elementary functions at
a certain point. Not only that but each such limit is basically reflected into the derivative
at other point in one way or another. Let us be more specific.

We start with the derivative of a power function:

α = lim
t→0

(1 + t)α − 1

t
= lim

x→1

xα − 1

x− 1
= f ′(1)

where f(x) = xα, x > 0.

Let us calculate the derivative at any other point a > 0:

f ′(a) = lim
x→a

xα − aα

x− a
= lim

x→a

aα((x
a
)α − 1)

a(x
a
− 1)

= aα−1 lim
t→1

tα − 1

t− 1
= αaα−1.

Hence, we have the derivative of a power function, also known as the power rule:

d

dx
(xα) = αxα−1, x > 0.

Next, let us find out the derivative of the exponential function.

Consider g(x) = ex and a ∈ R arbitrary. Then

g′(a) = lim
t→a

g(t)− g(a)

t− a
= lim

t→a

et − ea

t− a
= lim

t→a

ea(et−a − 1)

t− a
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and after the substitution t−a = x, since x→ 0 we obtain, using the second fundamental
limit (1.17):

g′(a) = ea lim
x→0

ex − 1

x
= ea.

Therefore we have
d

dx
ex = ex, x ∈ R.

But what if we have a simple change in the base of the exponential function? Say,
g(x) = bx with b > 0 and b ̸= 1.

Then, using again (1.17), we get

g′(a) = lim
t→a

g(t)− g(a)

t− a
= lim

t→a

bt − ba

t− a
= lim

t→a

ba(bt−a − 1)

t− a
=

ba lim
x→0

bx − 1

x
= ba lim

x→0

ex ln b − 1

x ln b
ln b = ba ln b.

Hence,
d

dx
bx = bx ln b, x ∈ R.

We will find next the derivative of the most common trigonometric function: h(x) =
sinx defined for all radian angles x ∈ R.

For fixed a ∈ R we have

h′(a) = lim
t→a

sin t− sin a

t− a
= lim

t→a

2 sin t−a
2

cos t+a
2

t− a

using the formula from trigonometry sinα − sin β = 2 sin α−β
2

cos α+β
2
. Then we change

the variable t−a
2

= x and notice that x→ 0 as t→ a. That gives

h′(a) = lim
x→0

sinx

x
cos(x+ a) = cos a,

and so
d

dx
sinx = cosx, x ∈ R.

For the cosine we can do a similar calculation. Let i(x) = cos x with x ∈ R. The
formula from trigonometry we need is cosα − cos β = −2 sin α−β

2
sin α+β

2
. We have, for

fixed a ∈ R,

i′(a) = lim
t→a

cos t− cos a

t− a
= lim

t→a

−2 sin t−a
2

sin t+a
2

t− a
.
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After changing the variable as before we see that

i′(a) = − lim
x→0

sinx

x
sin(x+ a) = − sin a.

2.2 Derivatives under algebraic operations

The basic algebraic operations that we do with numbers as addition, multiplication, sub-
traction and division can be done with functions. The derivative behaves nicely under
these operations. One can observe that straight from the properties of the limit we get

(αf + βg)′ = αf ′ + βg′

at every point where f ′ and g′ exist. One rule that is a little unexpected is the so called,
the product rule:

(fg)′ = f ′g + fg′

again, as long as f ′ and g′ exist. Let us see where this is coming from. Suppose we have
a point a at which f ′(a) and g′(a) exist. Then

(fg)′(a) = lim
t→a

f(t)g(t)− f(a)g(a)

t− a
= lim

t→a

f(t)g(t)− f(t)g(a) + f(t)g(a)− f(a)g(a)

t− a
=

lim
t→a

f(t)
g(t)− g(a)

t− a
+ lim

t→a
g(a)

f(t)− f(a)

t− a
.

One can observe that since f ′(a) exists then limt→a f(t) = f(a). So, the limit

(fg)′(a) = lim
t→a

f(t)g(t)− f(a)g(a)

t− a
= f(a)g′(a) + f ′(a)g(a)

which proves the product rule.

We apply the product rule now to find the derivative of functions that are products
in different basic elementary functions. As an example let us compute d

dx
[(x2 − x)ex]:

d

dx
[(x2 − x)ex] = (2x− 1)ex + (x2 − x)ex = (x2 + x− 1)ex.

The quotient rule can be stated like this:

(
f

g
)′ =

f ′g − fg′

g2
,
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of course, whenever the derivatives involved exist. The proof of this is similar to the one
we did for the product rule so we let that to the reader as an exercise. This rule allows
us to compute now the derivative of the rest of the trigonometric functions:

d

dx
(tan)(x) =

sin′ x cosx− sinx cos′ x

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

Similarly, we get d
dx
(cot)(x) = − csc2 x, whenever the sinx ̸= 0. Finally we can show that

sec′ x = secx tanx and csc′ x = − cscx cotx.

Can any function be a derivative? Derivatives have the special property that we
talked about at the end of the previous section on continuity.

Theorem 2.2.1. The derivative f ′ of a differentiable function f on [a, b] has the, so
called, Darboux property, or the intermediate value property, i.e. for y in between f ′(x1)
and f ′(x2) (a ≤ x1 < x2 ≤ b), there exists c ∈ [x1, x2] such that f ′(c) = y.

We will include a proof of this in the next section. Let us make the observation that
a function which has jump discontinuities such as

signum(x) =



1 if x > 0

0 if x = 0

−1 if x < 0

cannot be the derivative of any function.

Finally, we have one more but the most trickier rule which deals with the composition
of two functions: the chain rue. Suppose that f : D(f) → A ⊂ D(g)

g→ R, are two
differentiable functions on their domain. Then (g ◦ f)′ = (g′ ◦ f)f ′ or written a certain x
in the domain of f :

(g ◦ f)′(x) = (g′ ◦ f)(x)f ′(x).

One example, let us say, g(x) = x10 and f(x) = x2 + 2x + 1. We observe that
(g ◦ f)(x) = (x2 + 2x + 1)10 so d

dx
(x2 + 2x + 1)10 = 10((x2 + 2x + 1)9(2x + 2) = 20(x2 +

2x+ 1)9(x+ 1). Let us observe that (g ◦ f)(x) = (x+ 1)20 so we can apply the chain rule
into different functions and get (g ◦ f)′(x) = 20(x + 1)19(x + 1)′ = 20(x + 1)19, which is
the same answer as we have gotten before.

One important application of the chain rule is the formula for computing the deriva-
tive of the inverse of a function. Let us assume that f : I → J and g : J → I is the
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inverse of f , which is assumed to be differentiable with the derivative not zero at every
point in the interval I. It is possible to show that g is differentiable and so g(f(x)) = x
implies g′(f(x))f ′(x) = 1. Hence,

g′(y) =
1

f ′(g(y))
, y ∈ J .

As an example, if we take f(x) = sinx, x ∈ (−π
2
, π
2
) with the inverse g(x) = arcsinx,

x ∈ (−1, 1). The formula above gives:

g′(x) =
d

dx
(arcsin)(x) =

1

cos(arcsinx)
=

1√
1− sin2(arcsinx)

=
1√

1− x2
,

so we have the formula

d

dx
(arcsin)(x) =

1√
1− x2

, x ∈ (−1, 1).

One can similarly find the following two similar formulae:

d

dx
(arccos)(x) = − 1√

1− x2
, x ∈ (−1, 1), and

d

dx
(arctan)(x) =

1

1 + x2
, x ∈ R.

Finally, let us show another important formula that can be derived from the chain
rule, which is helpful when we differentiate functions of the form u(x)v(x). So, let us
assume that u and v are two differentiable functions defined on I and u(x) > 0 for all
x ∈ I (some interval). Then

(2.2)
d

dx
(uv) = vuv−1u′ + uv ln(u)v′ .

We can derive this by the so called logarithmic differentiation method: we set w = uv

and apply ln both sides to get lnw = v lnu. Differentiating we obtain w′

w
= v′ lnu + v u′

u
.

Solving for w′ we obtain formula (2.3).

Let us see how this formula works for f(x) = xx defined for x ∈ (0,∞). We see that
f ′(x) = x(xx−1) + xx lnx or f ′(x) = xx(1 + lnx). We will see later that this implies to
following interesting inequality

(2.3) xx ≥ e−
1
e ≈ 0.6922006276, x > 0.
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2.2.1 Problems

1. Find the derivative of the following functions at every (interior) point in their natural
domain using the definition of the derivative:

(a)f(x) =
1

x
(b) g(x) =

√
x

2. Calculate the derivatives of the following functions with the appropriate rules:

(a) f(x) = 2+x2

x5 , x ̸= 0,

(b) g(x) = ex sinx, x ∈ R

(c) h(x) = x2 tanx, x ∈ (0, π
2
)

(d) k(x) = 2x−1
x2+1

, x ∈ R

(e) l(x) = (3x2 − 2x) ln(x), x > 0

(f) m(x) = 3 secx− 2 cotx, x ∈ (0, π
2
)

(g) n(x) = (sinh x)(coshx), x ∈ R.

(h) o(x) = ex
2+2x, x ∈ R.

(i) p(x) = ln(x2 + 3), x ∈ R.

(j) q(x) = sin(x+ cosx), x ∈ R.

(k) r(x) = arcsin(2x− 1), x ∈ (0, 1).

(l) s(x) = arccos( 2x
1+x2 ), x ∈ (− 1, 1).

(m) t(x) = arctan(tanhx), x ∈ R.

3. Determine if the following function is differentiable or not. If it is, calculate its
derivative.
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f(x) =


x2 if x ≥ 0

−x2 if x < 0

.

Is this function twice differentiable?

4. Find all values of a such that the following function is differentiable:

h(x) =


(x+ a)2 if x ≥ 1

2a+ a2 + x if x < 1

.

5. If f(x) =
x2 − 3x+ 2

x2 + 1
, x ∈ R then find the equation of a line which is tangent to the

graph of y = f(x) at the point (0, 2). Draw the graphs of both the function and its tangent
line.

6. Let g(x) = u(x)v(x), with x in some interval domain which is a common domain
for the two “highly” differentiable functions u and v. Calculate g′′(x) in terms of the
derivatives of u and v. What about g′′′(x), can you guess what is that going to be with
calculating it?

7. Let n be a non-negative integer. Prove that if P is a polynomial of degree n, and
a ̸= 0, then

d

dx

[
(
P (x)

a
− P ′(x)

a2
+ ...+ (−1)n

P (n)(x)

an+1
)eax

]
= P (x)eax, x ∈ R.

8. Prove the quotient rule.

9. Prove the rule for the triple product (fgh)′ = f ′gh + fg′h + fgh′ and a similar one
for the quotient:

(
1

fgh
)′ = − 1

fgh
(
f ′

f
+
g′

g
+
h′

h
).

10. Prove the formula of differentiating the product of two functions: for n ∈ N
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(fg)(n) =
n∑

k=0

(
n

k

)
fkgn−k.

11. Find the derivative of the function g(x) = (sin2 x)x.

2.3 Implicit Differentiation

We are going to do four examples here. Let us start with a curve that looks implicit but
it cab be treated as explicit, as we will see later: x2 + y2 = 1, the unit circle. Clearly
the point P := (3/5, 4/5) is a point on this circle. We are going to find the equation of
the tangent line of this circle at the point P . For this purpose we employ a procedure
which is going to be used in the examples of this type. The equation which we have for
the circle, we think of it as a functional equation, i.e. x2+ y(x)2 = 1 and differentiate, we
say implicitly, but it is really the chain rule that is used: 2x+ 2yy′ = 0. At this time we
substitute the coordinates of the point P : 2(3

5
) + 2(4

5
)y′ = 0. The equation we get must

be a solvable linear equation in y′. So, solving for y′ gives y′ = −3
4
. Hence, the equation

of the tangent line is y − 4
5
= −3

4
(x− 3

5
) or

y =
4

5
+

9

20
− 3x

4
⇔ y =

5

4
− 3x

4
.

The graph of the unit circle and the tangent line at P is included in Figure 2.1. The
reason we said this is not really an implicit situation is because we can solve for y (y > 0)
in terms of x and obtain an explicit expression y =

√
1− x2. Then y′(x) = − 2x

2
√
1−x2 . So,

y′ = −3
4
as before.

If we want to take an example that would be really difficult to do it in explicit
form (but possible, since in general algebraic equations cannot be solved in explicit form,
i.e in terms of the elementary functions we have, if their degree is more or equal to 5),
we may take the following curve: x3 + y3 = 9y + x − 2 and the point of tangency is
P := (2, 1). Differentiating implicitly gives 3x2 + 3y2y′ = 9y′ + 1. Next, we substitute
with the coordinates of P : 12 + 3y′ = 9y′ + 1 which gives y′ = 11

6
. Hence the equation of

the tangent line if

y − 1 =
11

6
(x− 2) ⇔ y =

11x− 16

6
.

The graph of this cubic and the tangent line at P is included in Figure 2.2.

Let us take a look at a situation in which both x and y are related by an implicit
equation and the third variable, the time t, is the independent variable. It is known
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that the planets revolve around the Sun in elliptical orbits and they move according to
Kepler’s law: the radius connecting the planet to the Sun wipes out an area that varies
proportionally with time. Let us suppose that the equation of the trajectory of a planet
is given in polar form by the equation

r =
a(1− e2)

1 + e cos θ
, 0 ≤ e < 1,

where e is usually called eccentricity (and is pretty small for the planets closer to the
Sun), a is the semi-major axis.

It is easy to see that the formula of the area of a triangle ABC is given by A = bc sinA
2

and so if we assume that the triangle has the vertex A at the origin (the Sun) and vertices
B and C on the trajectory at time t and t+ ϵ, with ϵ > 0 very small, we see that

d

dt
A(t) =

r2

2

dθ

dt
.

Let us suppose that it takes T days (Earth days) to complete a full revolution. Then
θ(T ) = 2π and A(t) = area(Ellipse) t

T
so

dθ

dt
=
area(Ellipse)

T

2

r2

.

The area of the ellipse, is in this case, equal to πa2
√
1− e2. We will learn in Calculus

II and Calculus III that the equation of the arc-length is given by L =
∫ θ2
θ1

√
r2 + dr

dθ

2
dθ.

So, the linear speed of the a planet is given by

v =
dL

dt
=

√
r2 +

dr

dθ

2dθ

dt
=

√
r2 +

dr

dθ

22πa2
√
1− e2

Tr2
.

Let us compute the speed at t = 0, in other words, when the planet is at the closest
distance to the Sun. Differentiating with respect to θ, we get

dr

dθ
=
a(1− e2)e sin θ

(1 + e cos θ)2
⇒ dr

dθ
|θ=0 = 0.

Therefore,

v(0) =
2πa2

√
1− e2

Ta(1− e)
=

2πa

T

√
1 + e

1− e
.

We can think of the quantity 2πa
T

as the average speed and call it vav. We get the following
formulae for the speed of a planet at the Aphelion and Perihelion
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vap = vav

√
1− e

1 + e
, vperi = vav

√
1 + e

1− e
.

A nice applet that let you check the movement for an arbitrary planet around the Sun
can be found at

http : //galileo.phys.virginia.edu/classes/109N/more stuff/flashlets/kepler6.htm

Finally let us take a look at a problem which provides a great deal of ideas in
mathematics. We consider the curve x3 + y3 = xy + 7. A point on this curve of integer
coordinates is P (1, 2). The usual technique to determine the equation the tangent line to
this curve at P gives: 3x2+3y2y′ = y+xy′ or 3+12y′ = 2+ y′. Solving for y′ we get y′ =
− 1

11
. Hence the tangent line has equation y = 2−(x−1)/11 = 23−x

11
. We include a picture

of this curve and the tangent line at P in Figure 2.3. Let us observe that the tangent line
intersects the curve at another point. What is interesting is that this point has rational
coordinates too. In other words the equation x3+(23−x)3/113 = x(23−x)/11+7 has a
double zero at x = 1 and the third zero at x = −15

7
. This gives the point of intersection

of the tangent line with the curve at Q(−15
7
, 16

7
). Now we can repeat the procedure with

the tangent line at Q. We see that this shows that the equation x3 + y3 = xy + 7 has
possibly infinitely many points on it of rational coordinates (unless we get back to P or
other such point already constructed). It turns out that one can define some algebraic
structure (similar to the addition of numbers) on such points and the part of mathematics
which studies these structures is usually referred to as Elliptic Curves. These days there
are applications of this theory in Cryptography (see [1]).
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2.3.1 Problems

1. Find the equation of the tangent line at the point P := (2, 1) to the curve (x− 2y)3 −
(2x− y)2 − x+ y + 10 = 0 (see Figure 2.4). Answer: 7y + 19− 13x = 0.

1. Find the point of intersection of the tangent line to

C : x3 + y3 − xy = 7

at Q(−15
7
, 16

7
) with C. Answer: R = (97455

52297
,−15584

52297
) (Maple problem)

2.4 Derivatives of higher order

In this section we will take a look at some of the functions whose derivatives can be
computed for all orders. The simplest case is f(x) = ex, x ∈ R. It is clear that f (n)(x) = ex

for all n ∈ N.

The next situation when we can find basically all the derivatives is a polynomial function
p. If the degree of this polynomial has degree d, d ∈ mathbbN , then p(n)(x) = 0 for all
n ≥ d + 1. The first d derivatives can be calculated with the Power Rule. This has a
certain consequence later on then we are going to talk about the Taylor polynomial and
Taylor series for real analytical functions.

One other case which is really simple is g(x) = 1
x
for, say, x > 0. One can check that

g′(x) = − 1
x2 , g

′′(x) = 2
x3 , g

′′′(x) = − 6
x4 , and so the pattern we have here is
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g(n)(x) =
(−1)nn!

xn+1
, x > 0, n ∈ N.

One example which is a little more difficult: f(x) = xex, x ∈ R. Using the Product
Rule, one can find the first few derivatives and obtain f ′(x) = (x + 1)ex, f ′′(x) = (x +
2)ex,.... Hence, we guess that the general formula is f (n)(x) = (x+ n)ex.

In general, to establish a formula like these, we use in formal mathematics, a proof,
most of the time in these kind of examples, called (mathematical) induction proof or proof
by induction. The name comes from the fact that the proof is based on the Mathematical
Induction Principle (PMI).

Let us do an example like that. Suppose we take the function f(x) = (1 + x)1/2,
x ≥ 0. If we calculate the first derivative we get f ′(x) = 1

2
(1 + x)−1/2, x ≥ 0. Then, the

second derivative is f ′′(x) = −1
4
(1 + x)−3/2, x ≥ 0. Another step will give us the idea of

how the derivative is going to look in general: f ′′′(x) = 3
8
(1 + x)−5/2, x ≥ 0. We want to

show by induction on n ≥ 2 that

(2.4) f (n)(x) = (−1)n+1 (2n− 3)!!

2n
(1 + x)−

2n−1
2 , x ≥ 0.

(We used the notation (2k − 1)!! = 1(3)(5) · · · (2k − 1) for k ∈ N.)

We see that (2.4) is true for n = 2. Assume (2.4) is true for some n ≥ 2. Then

f (n+1)(x) = (−1)n+2 (2n− 3)!!(2n− 1)

2n+1
(1 + x)−

2n+1
2 , x ≥ 0

which is (2.4) for n + 1 instead of n. The PMI applies and we conclude the (2.4) is true
for all n ≥ 2.

The possibility of computing all the derivatives of a function is related to the Taylor
expansion which we will see later in Calculus II. We include here a few such expansions:

ex = 1 +
x

1!
+
x2

2!
+ · · · , x ∈ R,

sinx = x− x3

3!
+
x5

5!
− ..., x ∈ R,

arctan(x) = x− x2

2
+
x3

3
− ..., |x| < 1.
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2.4.1 Problems

1. Find the nth-derivative of g(x) = 1
1+x

2
, x > 0. Use the pattern you discovered to give

a reasonable calculational formula for g(2011)(736).

2. Find the nth-derivative of h(x) = xe−x, x real number.

3. Let f be the function defined for all x: f(x) = x sinx. What is the 100th derivative
of f?

2.5 Related rates problems

In this section we are going to show how the derivative concepts can be used to arrive
at some answers for reasonable questions involving movement. First, let us start with a
geometry question similar to the movement of the planets around the Sun. Suppose a
point P of coordinates (x, y) rotates on the ellipse (Figure 2.5)

x2

202
+

y2

152
= 1

in counterclockwise direction in such a way the distance to the origin changes in a constant
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way (| d
dt
OP | = 1). The question is, what are the values of dx

dt
and dy

dt
at the point (16, 9)?

We know that PO =
√
x2 + y2 and so −1 = d

dt
OP =

2x dx
dt

+2y dy
dt

2
√

x2+y2
. Also, if we differentiate

the the equation of the ellipse, implicitly with respect to t, we get 2x
202

dx
dt

+ 2y
152

dy
dt

= 0, or
dx
dt

= − 202(9)
152(16)

dy
dt

= −dy
dt
. Hence, dx

dt
= −dy

dt
= −

√
337
7

≈ −2.622508537.

2.5.1 Problems

1. Let a and b be positive real numbers such that a > b. The point P (x, y) moves on the
ellipse of equation

x2

a2
+
y2

b2
= 1

in such a way the distance to the origin has equation PO = a+b
2

+ a−b
2

cos 2t where t is
the time measured from initial position (a, 0) at t = 0. How fast is the point P moving at

time t = π
4
? In other words, what is v =

√
dx
dt

2
+ dy

dt

2
when t = π

4
?

2. This problem appears in [7] (Problem 39, page 170). A conical watering pail has a
grid of holes uniformly distributed over all of its surface. The water flows out through the
holes at a rate of kA m3/min, where k is a constant and A is the surface area in contact
with the water. Calculate the rate at which the water level changes (dh

dt
) at a level of the

water of h meters.

2.6 Newton’s Approximation Scheme

In general equations of the form f(x) = 0, with f an elementary function, are not solvable
in terms of our elementary functions (in other words, f−1 may exist locally but it is not
elementary), and so we usually have to approximate the solutions when we know they
exist. One of the methods of approximating such solutions is given by the Newton’s
Method which consists of taking a first guess, say x0, and then constructing the tangent
line at (x0, f(x0)) to the the graph of y = f(x), y = f(x0)+f

′(x0)(x−x0), and then taking
the intersection of this line with y = 0, i.e. solving the equation 0 = f(x0)+f

′(x0)(x−x0)
for x and considering this intersection the next iteration:

x1 := x0 −
f(x0)

f ′(x0)
.

Of course, we need to assume that f ′(x0) ̸= 0 and that is usually happening if we
are in an interval I (containing the solution of f(x) = 0) where the sequence of iterations
defined recursively by
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(2.5) xn+1 := xn −
f(xn)

f ′(xn)
, n ≥ 0,

is well defined and the derivative of f is bounded away from zero (|f ′(x)| ≥ δ > 0 for
all x ∈ I), and one can study the convergence of the sequence {xn} to the solution of
f(x) = 0, say α.

Usually the convergence is quadratic, in the sense that the error sequence ϵn =
|xn − α|, satisfies some inequality of the form ϵn+1 ≤ Cϵ2n for some constant C.

One classical result here is the following theorem

Theorem 2.6.1. (Newton-Raphson Theorem). Assume that f : [a, b] → R is a twice
differentiable function, and f(α) = 0 form some α ∈ [a, b]. If f ′(α) ̸= 0, then there exists
an ϵ > 0 such that the sequence defined by the iteration (2.5) converges to α for any initial
approximation x0 ∈ (α− ϵ, α+ ϵ).

Let us look at an example which goes back to Babylonians: approximating the
square root of a number. Suppose that a > 0 and f(x) = x2− a. Then the iteration (2.5)
can be written in the form

xn+1 = xn −
x2n − a

2xn
=

1

2
(xn +

a

xn
).

Sample Test II and Solutions

1. Consider the function f(x) =
1 + x

(2− x)2
. Find the equation of the tangent line to the

graph of y = f(x) at the point (1
2
, 2
3
). (Bonus: Use a graphing calculator to draw the

graph of y = f(x) and the above tangent line.)

Solution: Using the quotient rule and the product rule, we get

f ′(x) =
(2− x)2 − (1 + x)2(2− x)(−1)

(2− x)4
=

2− x+ 2 + 2x

(2− x)3
or

f ′(x) =
4 + x

(2− x)3
.

which gives f ′(1/2) = 9
2

8
27

= 4
3
. Hence, the equation is y = 2

3
+ 4

3
(x− 1

2
) or y =

4x

3
. The

graph f and of the tangent line at (1/2, 2/3) on the interval [0, 0.6] is:
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2. Compute the derivative for each of the following functions:

(a) f(x) = (cos 2x)3(sin 3x)2 (b) g(x) =
√
x− x2

(c) h(x) = ln(x+
√
x2 + 1) (d) i(x) = e−2x sec(3x)− arctan(sinx)

Solution: (a) Using the product formula and the derivatives of sine and cosine, we get

f ′(x) = −6(cos 2x)2 sin 2x sin2 3x+ 6(cos 2x)3 sin 3x cos 3x .

(b) The derivative of g is

g′(x) =
1− 2x

2
√
x− x2

(c) We have seen that h′(x) = 1√
x2+1

.

(d) The derivative is

i′(x) = −2e−2x sec(3x) + 3e−2x sec(3x) tan(3x)− cosx

1 + sin2 x
.

3. Determine the equation of the tangent line to the graph of equation

x ln(y + 2)− y ln(3x− 1) = 0

at the point (3, 2).

Solution: We use implicit differentiation to get ln(y+2)+x y′

y+2
−y′ ln(3x−1)−y 3

3x−1
= 0.

Substituting x = 3 and y = 2 gives ln 4+3y′/4−y′ ln 8−6/8 = 0. Solving for y′, we obtain

y′ = 3/4−ln 4
3/4−ln 8

≈ 0.479. Hence the equation of the tangent line is y = 2 + (x− 3)
3− 4 ln 4

3− 4 ln 8
.

The graph of the implicit equation and of the tangent line is included next:
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4. Find the nth derivative of f(x) = x+1
3x+2

.

Solution: Since

f(x) =
3x+ 3

3(3x+ 2)
=

3x+ 2

3(3x+ 2)
+

1

3(3x+ 2)
=

1

3
+

1

3(3x+ 2)

we get f ′(x) = − 3
3(3x+2)2

= − 1
(3x+2)2

= −(3x+ 2)−2. Then the second derivative

f ′′(x) = 2(3)(3x+2)−3, f ′′′(x) = −(3!)(32)(3x+2)−4, f (4)(x) = (4!)33(3x+2)−5, ....
and in general

f (n)(x) = (−1)nn!3n−1(3x+ 2)−(n+1), n ≥ 1.

5. Differentiate y = (1 + 2x)x
2

.

Solution: Using the formula (uv)′ = vuv−1u′ + uv(lnu)v′, we obtain

y′ = 2x2(1 + 2x)x
2−1 + 2x(1 + 2x)x

2

ln(1 + 2x) .
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Chapter 3

Applications

Quotation: Euclid taught me that without assumptions there is no proof.
Therefore, in any argument, examine the assumptions. —Eric Temple Bell
(1883-1960)

“The word theorem in English derives from the Greek word theoreo which is a
verb that has to do with “the quality of attention that has the intention of mind
which contemplates an object studiously and attentively.” From Bullinger, E.
W “A Critical Lexicon and Concordance to the ENglish and Greek New Tes-
tament”, Kregel Publications Grand Rapids, Michigan 1908.

“Like fire in a piece of flint, knowledge exists in the mind. Suggestion is the
friction which brings it out.” Vivekananda

3.1 Fermat’s Theorem, Rolle’s Theorem, Mean Value

Theorem, Cauchy Theorem

Let us start with a theorem that is essential in showing all the important theorems in this
section. In what follows we assume that a, b are two real numbers such that a < b.

Theorem 3.1.1. (Extreme Value Theorem)Every continuous function f on a closed
interval [a, b] is bounded. Moreover, the bounds of f are attained, e.i. there exist two
points α and β in [a, b] such that f(α) ≤ f(x) ≤ f(β) for all c ∈ [a, b].

Sketch of proof. If the function is not bounded then there exists a sequence xn such
that |f(xn)| → ∞. There must be a point in [a, b] to which the sequence xn accumulates,
or in other words, there must be a subsequences xnk

convergent to a point c ∈ [a, b]. Since
f is assumed to be continuous |f(c)| = limk→∞ |f(xnk

)| = ∞. This is not possible. Hence
the range of f must be a bounded interval because of the Intermediate Value Theorem

63
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Figure 3.1: Example for Rolle’s Theorem

(which we have seen before). This interval cannot be of the form [c, d) because of the
continuity argument used above.

The assumption that we have a closed interval is critical. If we only take an open
interval, like f(x) = 1

x(1−x)
defined on (0, 1), we see that this function is continuous and

unbounded.

Theorem 3.1.2. (Fermat’s Theorem) Let f be a differentiable function on (a, b) and
continuous on [a, b]. If c ∈ (a, b) is a point of local maximum or local minimum, then
f ′(c) = 0.

Proof. Without loss of generality we may assume that f(c) ≤ f(x) for all x ∈ (c−ϵ, c+ϵ)
for some small ϵ > 0. By definition of the derivative we must have

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

If we let x < c, we have x− c < 0 and so f(x)−f(c)
x−c

≤ 0 which implies f ′(c) ≤ 0. If we let

x > c, then x− c > 0 and f(x)−f(c)
x−c

≥ 0 which implies so f ′(c) ≥ 0. This is possible only
if f ′(c) = 0.

Theorem 3.1.3. (Rolle’s Theorem) Let f be a differentiable function on (a, b) and
continuous on [a, b]. If f(a) = f(b), then, there exists a c ∈ (a, b) such that f ′(c) = 0.

Proof. The function f is either a constant function, in which case the conclusion is clearly
true, or a non constant function. Hence, we have a point x0 where either f(x0) < f(a) =
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f(b) or f(x0) > f(a) = f(b). Without loss of generality we may assume that f(x0) <
f(a) = f(b). Then let c be the point given by Theorem 3.1.1 such that f(c) ≤ f(x) for
all x ∈ [a, b]. Since f(c) ≤ f(x0) < f(a) = f(b) we must have c ∈ (a, b). By Fermat’s
Theorem, we must have f ′(c) = 0.

Theorem 3.1.4. (Mean Value Theorem) Let f be a differentiable function on (a, b)
and continuous on [a, b]. Then, there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Sketch of Proof. Let us consider the function g(x) = f(x) −mx where m = f(b)−f(a)
b−a

.
One can see that this function satisfies the hypothesis of Role’s theorem. Hence, there
must be a c ∈ (a, b) such that g′(c) = 0. This implies the desired conclusion.

The next corollary is very close to the First Law of Classical Mechanics: “The velocity of
a body remains constant unless the body is acted upon by an external force.”

Corollary 3.1.5. (“First Principle of Classical Mechanics”) Let f be a differentiable
function on (a, b) and continuous on [a, b]. If f ′(x) = 0 for all x ∈ (a, b), then there exists
a constant C such that f(x) = C for all x ∈ [a, b].

Proof. Suppose by way of contradiction that f is not a constant. Then we can find
x1 < x2, a ≤ x1 < x2 ≤ b, such that f(x1) ̸= f(x2). Then by Mean Value Theorem

applied to f on [x1, x2] we find a c ∈ (x1, x2) such that f ′(c) = f(x2)−f(x1)
x2−x1

̸= 0. This
contradiction gives the result.

Radioactive Decay: Here is an application of this result. Let us assume a ∈ R, a >
0 (decay constant). Suppose that we have a function f which satisfy the differential
equation:

f ′(x) = −af(x) for all x ∈ R,

which is saying that the amount of radioactive substance rate of change (decreasing)
is proportional to the amount of radioactive substance left. Let us show that the only
functions which satisfy this equation are f(x) = Ce−ax, for all x ∈ R. Indeed, we
look at the newly defined function g(x) = f(x)eax and compute its derivative: g′(x) =
f ′(x)eax + af(x)eax = 0 for all x ∈ R. By Corollary 3.1.5, we must have g(x) = C for all
x ∈ R. Hence f(x) = Ce−ax for all x ∈ R.

“Propagation of light”: Let us show that the differential equation f ′′ + f = 0 has
only the solution f(x) = C1 sinx + C2 cosx, x ∈ R. We consider the new function
g(x) = f ′(0) sinx+f(0) cosx−f(x). Let us observe that g(0) = g′(0) = 0 and g′′+g = 0.
Let us look at another function h(x) = g(x)2 + g′(x)2, x ∈ R. We observe that h′(x) =
2g(x)g′(x) + 2g′(x)g′′(x) = 0, x ∈ R. Hence by Corollary 3.1.5, h(x) = C for all x ∈ R.
Since h(0) = 0 we see that h(x) = 0 for all x ∈ R. Therefore g(x) = 0 for all x ∈ R. So,
f(x) = C1 sinx+ C2 cosx, x ∈ R.
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Theorem 3.1.6. (Cauchy’s Theorem) Let f , g be two functions continuous on [a, b]
(a < b), differentiable on (a, b) such that g′(x) ̸= 0 for all x ∈ (a, b). Then there exists a
ξ ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)
.

Proof. Let us consider the function h(x) = f(x)−kg(x) where k = f(b)−f(a)
g(b)−g(a)

. This number

is well defined since g(b) = g(a) would imply by Rolle’s Theorem that g′(c) = 0 for some
c ∈ (a, b), which is not possible by our assumption. We apply Rolle’s Theorem to h on
[a, b]. Clearly h is continuous and differentiable on [a, b] (resp (a, b)). Also, h(b) = h(a)

is equivalent to f(b) − kg(b) = f(a) − kg(a) or k = f(b)−f(a)
g(b)−g(a)

(true by definition of k).

Hence we must have a ξ ∈ (a, b) in such a way, that h′(ξ) = 0. This is equivalent to

f ′(ξ)− kg(ξ) = 0 or f ′(ξ)
g′(ξ)

= k.

Here is another application of the sort of differential equation we have seen before.

Problem: Let us assume that f is a differential function on some interval I = (a, b) such
that f ′(x) = f(x)2 and f(x) ̸= 0 for all x ∈ I. Show that there exists a constant C ̸∈ I
such that f(x) = 1

C−x
for all x ∈ I.

Proof. We consider g(x) = 1
f(x)

which is well defined for x ∈ I. Then g′(x) = −f ′(x)
f(x)2

= −1

and so (g(x) + x)′(x) = 0. Hence g(x) + x = C for some constant C. This implies
f(x) = 1

C−x
for x ∈ I. It is clear that C ̸∈ I.

3.1.1 Problems

1. Let a > 0 and f a function twice differentiable on R such that f ′′(x) + a2f(x) = 0 for
all x ∈ R. Show that there exists two constants C1 and C2 such that f(x) = C1 sin ax +
C2 sin ax for all x ∈ R.

2. Consider a differentiable function f is a differential function on some interval I =
(a, b) such that f ′(x) = f(x)3 and f(x) ̸= 0 for all x ∈ I. Show that there exists a constant
C, such that f(x) = ±1√

C−2x
, x ∈ I.

3. [Darboux Property for derivatives] Consider f : [a, b] → R a differentiable
function and some real number s such that f ′(a) < s < f ′(b). Follow the following steps
to prove the Darboux Property for derivatives (see Lars Olsen [5]):

(i) show that u(x) =


f(x)−f(a)

x−a
if x > a

f ′(a) if x = a

and v(x) =


f(b)−f(x)

b−x
if x < b

f ′(b) if x = b

are

continuous functions.

(ii) check that t = u(b) = v(a) and if s = t then we can apply MVT to f and
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conclude that m = f ′(c) for some c ∈ (a, b).

(iii) if s < t we can apply IVT to u and then MVT to f and conclude that m = f ′(c)
for some c ∈ (a, b).

(ii) if t < s we can apply IVT to v and then MVT to f and conclude that m = f ′(c)
for some c ∈ (a, b).

4. Consider a differentiable function f on [−1, 1] such that f(−1) = −3, f(0) = −5 and
f(1) = 2. Prove that there is a point c ∈ (−1, 1) such that f ′(c) = 4.

5. [Putnam Exam]Let f be a three times differentiable function on R having at least
five distinct real zeroes. Show that

f + 6f ′ + 12f ′′ + 8f ′′′

has at least two distinct real zeroes.

3.2 L’Hospital’s Rule

L’Hospital Rule is a technique used in the computation of limits in order to reduce them
to elementary ones. There are two main cases in which one uses L’Hospital’s Rule. Let
us start with the case when the limit of the second function is ∞.

Theorem 3.2.1. Let us assume that f and g are two functions defined on some domain D
containing a as a limit point. In addition we know that g(x) ↗ ∞ (it goes increasingly to

infinity, i.e. g′(x) > 0, as x ∈ D goes to a) and limx→a
f ′(x)
g′(x)

= L. Then limx→a
f(x)
g(x)

= L.

Proof Sketch: We fix an ϵ ∈ (0, 1). Let us assume that if 0 < |x− a| < δ1 we have

|f
′(x)

g′(x)
− L| < ϵ

4
. For u fixed but satisfying the same inequality, i.e. 0 < |u − a| < δ1, we

look at

|f(x)
g(x)

− f(x)− f(u)

g(x)− g(u)
| =

∣∣∣∣∣
f(u)
g(x)

− f(x)
g(x)

g(u)
g(x)

1− g(u)
g(x)

∣∣∣∣∣ =
∣∣∣∣∣
f(u)−Lg(u)

g(x)
− (f(x)

g(x)
− L)g(u)

g(x)

1− g(u)
g(x)

∣∣∣∣∣ ,
we observe that if we let 0 < |x − a| < δ2 = δ2(u, ϵ) < δ1, g(x) is big enough to insures
that

|f(x)
g(x)

− f(x)− f(u)

g(x)− g(u)
| ≤ ϵ

4
+ |f(x)

g(x)
− L| ϵ

4
.

By Cauchy’s Theorem we have f(x)−f(u)
g(x)−g(u)

= f ′(cc,u)
g′(cx,c)

with cx,u between x and u which makes

it satisfy 0 < |cx,u − a| < δ1. Hence
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|f(x)− f(u)

g(x)− g(u)
− L| = |f

′(cc,u)

g′(cx,c)
− L| < ϵ

4
.

Therefore, one can use the triangle inequality, and the above inequalities to get

|f(x)
g(x)

− L| ≤ |f(x)
g(x)

− f(x)− f(u)

g(x)− g(u)
|+ |f(x)− f(u)

g(x)− g(u)
− L| < ϵ

2
+ |f(x)

g(x)
− L| ϵ

4
=⇒

(1− ϵ

4
)|f(x)
g(x)

− L| ≤ ϵ

2
=⇒ |f(x)

g(x)
− L| < ϵ

2
(
4

3
) < ϵ.

Let’s see some applications of this very powerful rule. We have some limits in
Chapter I which we now prove with this rule. For instance,

lim
x→∞

x2

ex
L′H
= lim

x→∞

2x

ex
=

L′H
= lim

x→∞

2

ex
= 0.

In a similar way one can show any of the cases in (1.23). Clearly, (1.24) follows from
(1.23), but we can use L’Hospital, for example,

lim
x→∞

lnx√
x

L′H
= lim

x→∞

1/x

1/(2
√
x)

= lim
x→∞

2√
x
= 0.

The second version of L’Hospital Rule is when both functions approach 0.

Theorem 3.2.2. Let us assume that f and g are two functions defined on some domain
D containing a as a limit point. In addition we know that f(x), g(x) → 0 and g′(x) ̸= 0,

as x ∈ D goes to a. Finally, if limx→a
f ′(x)
g′(x)

= L. Then limx→a
f(x)
g(x)

= L.

The proof goes the same way as before and we let it as an exercise for the reader.

Let’s look at some of the fundamental limits in Chapter I. First, we have for the
second fundamental limit (1.16)

lim
x→0

ln(1 + x)

x
L′H
= lim

x→0

1/(1 + x)

1
= lim

x→0

1

1 + x
= 1.

Notice that we have a vicious circle here since we arrived at the derivatives of
the elementary functions by using the fundamental limits. So, when we define these
transcendental functions more precisely, we will have to prove those limits independent
of the L’Hospital’s Rule or any differentiation technique. Let us show one other example
of how can we obtain pretty good information about a function with L’Hospital’s Rule.
Let us prove that sinx = x − x3

6
+ O(x5), here we used a classical notation, f(x) =
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Figure 3.2: Graph of y =
sinx−x+x3

6

x5 , x ̸= 0, x ∈ [−10, 10]

g(x) + O(h(x)), which means that f(x)−g(x)
h(x)

is bounded as a function of x in a certain
domain. Indeed, first

lim
x→0

sinx− x

x3
L′H
= lim

x→0

cosx− 1

3x2
L′H
= lim

x→0

− sinx

6x
= −1

6
, and

lim
x→0

sinx− x+ x3

6

x5
L′H
= lim

x→0

cosx− 1 + x2

2

5x4
L′H
= lim

x→0

− sinx+ x

20x3
=

1

120
.

This implies that sinx = x− x3

6
+O(x5) for all x ∈ R. What is interesting is that a more

precise statement is true, as the Figure 3.5 suggests, and its proof is left as an exercise:

| sinx− x+
x3

6
| ≤ |x|5

120
, x ∈ R.

3.2.1 Problems

1. Prove the second version of L’Hospital’s Rule.

2. Prove the inequality
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| sinx− x+
x3

6
| ≤ |x|5

120
, x ∈ R.

3. Prove the inequality

| cosx− 1 +
x2

2
| ≤ x4

24
, x ∈ R.

4. Use L’Hospital’s Rule to show that

lim
x→0

ex − 1− x− x2

2

x3
=

1

6
.

5. Use L’Hospital’s Rule to show that

lim
x→0

tanx− x

x3
=

1

3
.

6. Use L’Hospital’s Rule to show that

lim
x→0

arctanx− x+ x3

3

x5
=

1

5
.

7. Prove the inequality

| arctanx− x+
x3

3
| ≤ |x|5

5
, x ∈ R.

8. Use L’Hospital’s Rule to show that

lim
x→0

√
1 + x− 1− x

2
+ x2

8

x3
=

1

16
.

9. Prove the inequality

|
√
1 + x− 1− x

2
+
x2

8
| ≤ 3|x|3

8
, x ∈ [−1,∞).
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10. Let a > 0 and f be differentiable on (0,∞) such that f ′(x) + af(x) → L. Show that
f(x) → L

a
.

3.3 Optimization Problems

Let us take a look at three optimization problems which are classic. First, we want to
prove the Arithmetic-Geometric Mean inequality:

(3.1) n ∈ N, n ≥ 2, a1, a2, ..., an ≥ 0 =⇒ a1 + a2 + ...+ an
n

≥ n
√
a1a2...an.

Consider the function f(x) = a1+a2+...+x
n

− n
√
a1a2...an−1x defined for all x ≥ 0. We see that

f(0) ≥ 0, and f ′(x) = 1
n
− 1

n
n
√
a1a2...an−1x

1−n
n . We may assume that a1, a2, ..., an−1 > 0

and, in this case, we see that the only critical point of f is x0 = n−1
√
a1a2...an−1. This is

clearly a point of minimum for f and if we calculate f(x0) we see that

f(x0) =
n− 1

n

(
a1 + a2 + ...+ an−1

n− 1
≥ n−1

√
a1a2...an−1

)
.

We observe that this reduces the problem to n− 1 non-negative numbers. This argument
can then be repeated until we arrive at only two numbers a1 and a2. It is clear that
(a1 + a2)/2 ≥ √

a1a2 is true because it is algebraically equivalent to (
√
a1 −

√
a2)

2 ≥ 0.

Let us consider now the problem of finding the maximum volume cone inscribed
in a sphere (see Figure 3.3). The radius of the sphere is R > 0 and the radius of the
cone is r > 0. Hence the hight of the cone is h = R +

√
R2 − r2, and so the volume is

V = πr2h
3

= π
3
(r2R + r2

√
R2 − r2). We look at the derivative of V with respect to r

V ′(r) =
π

3
(2rR + 2r

√
R2 − r2 − r3√

R2 − r2
), or

V ′(r) =
rπ

3
√
R2 − r2

(2R
√
R2 − r2 + 2(R2 − r2)− r2).

The equation V ′(r) = 0 is equivalent to 2R
√
R2 − r2 = 3r2 − 2R2 or

4R4 − 4R2r2 = 9r4 − 12r2R2 + 4R4 ⇐⇒ r = r0 :=
2
√
2R

3
.

We notice that V (r0) =
πr20h

3
= π(8)R3

27
(1 + 1

3
) = 32πR3

81
. Since we have V (0) = 0 and

V (R) = πR3

3
< 32πR3

81
we see that we could assume that the center of the sphere is inside
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r

R

Figure 3.3: Cone inscribed in a sphere

the cone. We have only one critical point so this must be the maximum. If we denote
this maximum by Vc and the volume of the sphere by Vs we observe that Vc

Vs
= (2

3
)3.

Finally, let us prove the Cauchy-Schwartz inequality:

a1, a2, ...., an, b1, b2, ....bn =⇒ (a21+a
2
2+...+a

2
n)(b

2
1+b

2
2+...+b

2
n) ≥ (a1b1+a2b2+...+anbn)

2.

Let us consider the function g(x) = (a1 − b1x)
2 + (a2 − b2x)

2 + ... + (an − bnx)
2 which

satisfies clearly g(x) ≥ 0 for all real numbers x. The function g is a quadratic since
g(x) = (a21+a

2
2+...+a

2
n)−2(a1b1+a2b2+...+anbn)x+(b21+b

2
2+...+b

2
n)x

2 = A−2Bx+Cx2.
Its minimum is attained at x0 which is the solution of g′(x) = 0. We can assume that
C > 0, otherwise the inequality is trivially satisfied. Then x0 = B

C
and so, in particular,

g(x0) =
AC−B2

C
≥ 0, which is equivalent to our inequality of interest.

3.4 Sketching Graphs of Elementary Functions

For some simple functions, if we use the information about the function, such as the x-
intercepts, y-intercept, asymptotes, symmetry, the information about the derivative and
its second derivative, we can draw the graph of the function with pretty good accuracy.
We are going to exemplifying this first with f(x) = x3−x

x2+1
, x ∈ R. We see that the x-

intercepts are x = 0, x = 1 and x = −1. The function is odd because f(−x) = −f(x), so
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Figure 3.4: Graph of y = x3−x
x2+1

its graph is symmetric with respect to the origin. We have f ′(x) = x4+4x2−1
(x2+1)2

, which gives

the critical points x1,2 = ±
√√

5− 2 ≈ ±0.4858682712. The second derivative is given by

f ′′(x) = −4x(x2−3)
(x2+1)3

which gives inflection points x3 = 0, x4,5 = ±
√
3 ≈ ±1.732050808. We

have a slant asymptote since f(x) = x− 2x
x2+1

. This identity shows that y = x is the slant
asymptote. All the information leads to the graph of f shown in Figure 3.4.

Let us mention that y = mx+n is a slant asymptote of f at ∞, if m = limx→∞
f(x)
x

and n = limx→∞ f(x)−mx. The same definition goes for −∞.

Next, we are going to look at an example of an elementary function which has a
horizontal asymptote at ∞ and a slant asymptote at −∞. Let g(x) =

√
x6+1−x3

x2+1
, x ∈ R.

We are going to use Maple to do some computations here, for getting

g′(x) =
(x3 −

√
x6 + 1)x(3x3 + 3x+ 2

√
x6 + 1)

(x2 + 1)2
√
x6 + 1

.

There are only two critical which can be computed exactly x1 = 0 and x2 = −
√
10
√
249− 130/10 ≈

−0.5272318124. One can check that y = −2x is a slant asymptote at −∞ and y = 0 is
a horizontal asymptote at ∞. We are not going to look at the second derivative. The
graph of y = g(x) is shown in Figure 3.5.
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Figure 3.5: Graph of y = g(x), x ∈ [−5, 5]



Chapter 4

Definite Integral

Quotation: “Every minute dies a man, Every minute one is born;” I need
hardly point out to you that this calculation would tend to keep the sum total
of the world’s population in a state of perpetual equipoise, whereas it is a
well-known fact that the said sum total is constantly on the increase. I would
therefore take the liberty of suggesting that in the next edition of your excellent
poem the erroneous calculation to which I refer should be corrected as follows:
”Every moment dies a man, And one and a sixteenth is born.” I may add
that the exact figures are 1.067, but something must, of course, be conceded to
the laws of metre. Charles Babbage, letter to Alfred, Lord Tennyson, about a
couplet in his ”The Vision of Sin”

4.1 Antiderivative and some previous formulae

Let us start with the definition of the anti-derivative of a function. We say that F
differentiable on D (in general a union of intervals) is the antiderivative of f defined on
D, if F ′(x) = f(x) for all x ∈ D. It is clear that if F is an antiderivative of f then F +c is
too, for every constant c. The notation used to go from a function f to its antiderivative
F , if it exist, is

∫
f(x)dx = F (x) +C. So we can write all the differentiation formulae we

have seen so far with this new notation:

∫
xαdx =

xα+1

α + 1
+ C,where α ̸= −1, and

∫
1

x
dx = ln |x|+ C,

∫
aαxdx =

aαx

α ln a
+ C, a ̸= 1, a > 0, α ̸= 0,

∫
lnxdx = x lnx− x+ C, x > 0,

75
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∫
sinαxdx = −cosαx

α
,

∫
cosαxdx =

sinαx

α
, α ̸= 0,

∫
tanαxdx = − ln | cosαx|

α
+ C,

∫
cotαxdx =

ln | sinαx|
α

+ C, α ̸= 0,

∫
secαxdx =

ln | secαx+ tanαx|
α

+C,

∫
cscαxdx = − ln | cscαx+ cotαx|

α
+C, α ̸= 0,

∫
sec2 αxdx =

tanαx

α
+ C,

∫
csc2 αxdx = −cotαx

α
+ C, α ̸= 0,

∫
1

x2 + α2
dx =

1

α
arctan

x

α
+ C, α ̸= 0,

∫
1√

α2 + x2
dx = ln(x+

√
α2 + x2) + C,

(4.1)

∫
1√

α2 − x2
dx = arcsin(

x

α
) + C.

∫
1

x2 − α2
dx =

1

2a
ln

∣∣∣∣x− a

x+ a

∣∣∣∣+ C.

Let us point out that these rules are basically just our pervious differentiation rules
“in reverse”. The whole process of integration becomes all of a sudden a lot trickier
when we throw in the chain rule. For instance, let us look at the problem of finding the
anti-derivative of f(x) = ex

1+e2x
. We observe that f(x) = g′(x)

1+g(x)2
, where g(x) = ex, so∫

f(x)dx = arctan g(x) + C = arctan ex + C. In Calculus II, we will study a variety of
techniques that will make the process of integration more straightforward. We will see in
this chapter just one of them, called, integration by substitution, but we will do it in the
context of definite integrals.

Since the derivative is a linear operation we can easily observe that∫
[αf(x) + βg(x)]dx = α

∫
f(x)dx+ β

∫
g(x)dx,

the equality is “up to a constant”, i.e. one needs to add appropriate constants to get the
equality.
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Examples: Compute an antiderivative of each of the following functions:

(a) f(x) =
x2 − 2x+ 3

x4
,

(b) g(x) = x sin(x2)− 1

1 + 9x2
,

(c) h(x) =
x+ 2

x2 − 1

Solutions: (a) We have f(x) = x−2−2x−3+3x−4 and therefore
∫
f(x)dx = − 1

x
−2x−2

−2
+

3x−3

−3
+C or

∫
f(x)dx = − 1

x
+ 1

x2 − 1
x3 +C. If we want to put the answer in the same form

as the given function then ∫
f(x)dx =

x− x2 − 1

x3
+ C .

(b) Here we need to think of the chain rule in reverse. So we have∫
g(x)dx =

1

2

∫
2x sin(x2)dx− 1

3

∫
3

1 + (3x)2
dx =

= −cos(x2)

2
− arctan(3x)

3
+ C .

(c) We split it as follows: h(x) = x
x2−1

+ 1
x−1

− 1
x+1

and then∫
h(x)dx =

1

2

∫
2x

x2 − 1
dx+

∫
1

x− 1
dx−

∫
1

x+ 1
dx =

ln |x2 − 1|
2

+ ln |x− 1| − ln |x+ 1|+ C =
1

2
ln |x2 − 1| |x− 1|2

|x+ 1|2
+ C,

or

∫
h(x)dx =

1

2
ln

|x− 1|3

|x+ 1|
+ C.

More examples (the techniques used here are going to be studied in more
detail in the next several sections):

Compute an antiderivative of each of the following functions:

(a) f(x) =
x3 − x2 + 3x+ 1

x4
,
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(b) g(x) = x cos(x2)− 1

4 + x2
,

(c) h(x) =
3x+ 5

(x+ 1)(x− 4)

Solutions: (a) Usual formulae for computing the antiderivative give∫
f(x)dx =

∫
1

x
dx−

∫
x−2dx+ 3

∫
x−3dx+

∫
x−4dx = ln |x|+ 1

x
− 3

2x2
− 1

3x3
+ C,

so,

∫
f(x)dx = ln |x|+ 1

x
− 3

2x2
− 1

3x3
+ C.

(b) For the antiderivative of g use the chain rule in “reverse” and remember the rule
of differentiation of the tan−1:

∫
g(x)dx =

1

2
sinx2 − 1

2
arctan(x/2) + C.

(c) We first decompose 3x+5
(x+1)(x−4)

= A
x−4

+ B
x+1

. Solving for A and B one gets A = 17
5

and B = −2
5
. Then

∫
h(x)dx =

17

5

∫
1

x− 4
dx− 2

5

∫
1

x+ 1
dx =

17

5
ln |x− 4| − 2

5
ln |x+ 1|+ C,

and so ∫
h(x)dx =

1

5
ln

|x− 4|17

|x+ 1|2
+ C.

4.1.1 More Homework Problems

1. Find an antiderivative of the following functions:

(A) f(x) = x2 − 2x− 1
x
+ 3

x2 , x ̸= 0,

(B) g(x) = x+1
x3 , x ̸= 0,

(C) h(x) = 2 sinx− 3 cos 2x, x ∈ R,

(D) i(x) = tan2 x, x ∈ (−π/2, π/2),
(E) j(x) = e2x + 23x, x ∈ R,
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(F) k(x) = log2 x, x > 0,

(G) l(x) = 1
x2−4

, x > 2,

(H) m(x) = x
x2+1

, x ∈ R

2. Calculate
∫
x sinxdx and

∫
x cosxdx.

3. Calculate
∫
xexdx and

∫
xe2xdx.

4. Find a twice differentiable function f such that f(1) = f ′(1) = 0 and f ′′(x) = 1
x
for

all x > 0.

5. Find a twice differentiable function f such that f(−1) = f ′(−1) = 0 and f ′′(x) = 1
x

for all x < 0.

6. (Chain rule combinations) Find an antiderivative of the following functions:

(a) f(x) = 2 sin(2x+ 1)− 3 cos(3x− 1), x ∈ R,

(b) g(x) = (2x+ 1)ex
2+x, x ∈ R,

(c) h(x) = 2x+1
x2+x+1

, x ∈ R

4.2 Definite Integral

This is the third most important concept in Calculus besides the notions of limit and
derivative. We are going to introduce it for the so called Riemann Integral, but it can
be generalized to cover a bigger class of functions. At this point, let us assume that f
is a real valued function defined on the closed interval [a, b] with a < b. For n ∈ N,
we let a = x0 < x1 < x2... < xn = b be a partition of [a, b] into n-intervals, which are
not necessarily equal in length, and some arbitrary points ck ∈ [xk−1, xk], k = 1, ..., n.
The number δ = max{xi − xi−1 : i = 1, ..., n} is called the norm of the partition ∆ :=
(x0, x1, x2, ..., xn), x0 = a < x1 < x2 < ... < xn = b.

Definition 4.2.1. We say that f is Riemann integrable on the interval [a, b] if the
limit

(4.2) ℓ := lim
δ→0

n∑
i=1

f(ci)(xi − xi−1)

exists. The limit is understood in the sense that ci and the partition are arbitrary. The
limit ℓ is usually denoted by ∫ b

a

f(x)dx.
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Sums of the form
∑n

i=1 f(ci)(xi−xi−1), as in (4.2), are called Riemann sums. It turns
out that every continuous function on a closed interval is Riemann integrable. This is a
result that is taught in a more advanced courses, like Real Analysis I or II (for mathematics
majors). There are discontinuous functions which are still Riemann integrable. One
interesting example is the function

g(x) =


sin 1

x
if x ̸= 0,

0 if x = 0

,

which has an essential discontinuity at zero. However, the Riemann integral of g over [0, π]
exists and it is about 1.575936300. A finite number of discontinuities in [a, b] (especially
of the ones where sided limits exist) do not pose any problems for the Riemann integral.
So, a function like

s(x) =


sinx
| sinx| if x ̸= kπ, k ∈ Z

0 if x = kπ, k ∈ Z
,

is Riemann integrable for every interval [a, b]. (A nice exercise here is to compute∫ 2018

2000
s(x)dx).

One classical example of a function which is not Riemann integrable is given by

h(x) =


1 if x ∈ Q,

0 if x ̸∈ Q
.

One can see that the limit in (4.2) doesn’t exist since we can pick in every interval a
rational ck or an irrational ck. That changes the sum from 1 to 0, for every partition.

One of the geometrical interpretations of the number
∫ b

a
f(x)dx is the area under

the graph of y = f(x), x-axis x = a and x = b. The next theorem gives a very interesting
way of computing the above limits in terms of an antiderivative of f and at the same time
gives the existence of an anti-derivative of a continuous function.

Theorem 4.2.2. (Fundamental Theorem of Calculus-FTC.)

(a) Let f be a real-valued function defined on [a, b] which is continuous. If F (x) =∫ x

a
f(t)dt for all x ∈ [a, b]. Then F ′(x) = f(x) for all x ∈ [a, b].

(b) If f is Riemann integrable and F is an anti-derivative of f , then
∫ b

a
f(t)dt =

F (b)− F (a).

Let us look at some applications of the FTC.



4.2. DEFINITE INTEGRAL 81

Problem 1. Let F (x) =

∫ 3x3−2x

x2

1

t+ ln t
dt for x ∈ [1,∞). Find the derivative of F (x)

and then compute F (1).

Solution: The function g(t) = 1
t+ln t

is well defined and an elementary function on the

interval t ∈ [1,∞). By FTC part (a) if we introduce G(x) =
∫ x

1
1

t+ln t
dt for x ≥ 1, we have

G′(t) = g(t), for all t. This means that G is an anti-derivative of g. By part (b) of FTC,
we see that F (x) = G3(x3 − 2x)−G(x2). As a result, chain rule gives

F ′(x) = G′(3x3 − 2x)(9x2 − 2)−G′(x2)(2x).

But G′(3x3 − 2x) = g(3x3 − 2x) = 1
3x3−2x+ln(x3−2x)

and G(x2) = g(x2) = 1
x2+ln(x2)

. Substi-
tuting we obtain

F ′(x) =
9x2 − 2

3x3 − 2x+ ln(x3 − 2x)
− 2x

x2 + ln(x2)
, x ≥ 1.

From here we just substitute x = 1 and obtain F ′(1) = 9− 2− 2 = 5 .

This next problem is a little more trickier.

Problem 2. Let f(x) =

∫ sinx

cosx

1√
1− t2

dt for x ∈ [0, π
2
]. Find the derivative of f(x) and

then find f(x).

Solution: Using the FTC and the chain rule, we get

f ′(x) = d
dx

∫ sinx

0
1√
1−t2

dt− d
dx

∫ cosx

0
1√
1−t2

dt =
1√

1−sin(x)2
cosx− 1√

1−cos(x)2
(− sinx) = cosx

cosx
+ sinx

sinx
= 2 , x ∈ [0, π

2
].

Hence f(x) = 2x+ C. Since f(π/4) = 0, we must have f(x) = 2x− π
2
.

Let us observe that one ca use FTC part (b) and formula (4.1) and arrive at the same
result:

f(x) = arcsin(sin x))− arcsin(cosx)) = x− arcsin(sin(π/2− x)) =

x− (π/2− x) = 2x− π/2, x ∈ [0, π
2
].

P roblem 3. Differentiate the function F (x) =

∫ tanx

− tanx

1

1 + t2
dt.

Solution: We define G(x) =
∫ x

0
1

1+t2
dt and observe that G′(x) = 1

1+x2 and F (x) =
G(tanx)−G(− tanx). Then

F ′(x) = G′(tanx) sec2 x−G′(− tanx)(− sec2 x) =
sec2 x

1 + tan2 x
+

sec2 x

1 + tan2 x
= 2
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So,

F ′(x) = 2 .

Another application of the FTC and the fact that continuous functions are Riemann
integrable, is the next exercise of calculating a special type of limit.

Problem 4. Find the value of the limit lim
n→∞

n

2n∑
k=1

1

4n2 + k2
.

Solution: We write this limit as the limit of a Riemann sums:

lim
n→∞

n
2n∑
k=1

1

4n2 + k2
= lim

n→∞

2n∑
k=1

n

4n2

1

1 + ( k
2n
)2

=

= 1
2
lim
n→∞

2n∑
k=1

1

2n

1

1 + ( k
2n
)2

=
1

2

∫ 1

0

1

1 + x2
dx =

1

2
arctanx|10 =

1

2

π

4
=
π

8
.

Therefore lim
n→∞

n
2n∑
k=1

1

4n2 + k2
=
π

8
.

Problem 5. Find the value of the limit

lim
n→∞

1

3n+ 1
+

1

3n+ 2
+ . . .+

1

4n
.

Solution: We use the sigma notation to rewrite this limit as

lim
n→∞

n∑
k=1

1

3n+ k
= lim

n→∞

n∑
k=1

1

n

1

3 + k/n
=

∫ 1

0

1

3 + x
,

so after computing the integral we get

lim
n→∞

1

3n+ 1
+

1

3n+ 2
+ . . .+

1

4n
= ln(4/3).

4.2.1 Homework Problems

Problem 1. Let f(x) =

∫ 3x−2

2x−1

1

t2 + 2
dt for x ∈ R. Find the derivative of f(x).
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Problem 2. Let f(x) =

∫ tanx

− tanx

√
1 + t2dt for x ∈

(
−π

2
, π
2

)
. Find the derivative of f(x)

and then find f(π/6).

Problem 3. Find the value of the following limit:

lim
n→∞

sin π
4n

+ sin 2π
4n

+ ...+ sin nπ
4n

n
Answer :

4− 2
√
2

π

Problem 4. Find the value of the following limit:

lim
n→∞

5n∑
k=1

1

n+ k
Answer : ln(6)

Problem 5. What is the exact value of the limit:

lim
n→∞

n
n∑

k=1

1

n2 + k2
? Answer :

π

4

Problem 6. What is the exact value of the limit:

lim
n→∞

n
3n∑
k=1

1

n2 + k2
? Answer : arctan(3)

Problem 7. Find the value of the following limit:

lim
n→∞

4n∑
k=1

1√
9n2 + k2

Answer : ln(3)

Problem 8. Find the value of the following limit:

lim
n→∞

(
1

3n+ 1
+

1

3n+ 3
+

1

3n+ 5
+ ...+

1

5n− 1

)
Answer :

1

2
ln(5/3)

Problem 9. Find the value of the following limit:

lim
n→∞

4n∑
k=1

1√
25n2 − k2

Answer : arcsin(4/5)

Problem 10. What is the exact value of the limit:

lim
n→∞

1

n

n∑
k=1

k√
n2 − k2

? Answer : 1
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Problem 11. What is the exact value of the limit:

lim
n→∞

n∑
k=1

1√
n2 + kn

? Answer : 2
√
2− 2

4.3 Integration using a substitution

We are mainly concerned with the change of variables in the definite integral. The chain
rule d

dt
F (u(t)) = f(u(t))u′(t) where F is an anti-derivative of f , and the FTC gives the

following formula

∫ b

a

f(x)dx = F (b)− F (a) =

∫ tb

ta

f(u(t))u′(t)dt

where u(ta) = a and u(tb) = b, and u : [ta, tb] → [a, b] is a differentiable function
called the substitution (x = u(t)).

Problem 1. Calculate the definite integral

∫ 5

0

x√
3x+ 1

dx.

Solution: Changing the variable 3x+ 1 = u2 gives 3dx = 2udu

∫ 5

0

x√
3x+ 1

dx =

∫ 4

1

u2 − 1

3u

2udu

3
=

2

9
(
u3

3
|41 − u|41) = 4,

so ∫ 5

0

x√
3x+ 1

dx = 4 .

P roblem 2. Calculate the definite integral

∫ 4

0

9− 5x√
2x+ 1

dx.

Solution: We change the variable t2 = 2x+ 1 (tdt = dx)and obtain

∫ 4

0

9− 5x√
2x+ 1

dx =

∫ 3

1

9− 5 t2−1
2

t
tdt =

1

2

∫ 3

1

(23− 5t2)dt =

1
2
[23t|31 − 5

3
t3|31] = 1

2
[23(2)− 5(26)

3
] = 23− 65

3
= 4

3
.

Hence, ∫ 4

0

9− 5x√
2x+ 1

dx =
4

3
.
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Problem 3. Find the value of the definite integral

∫ 1

0

(x+ 2)dx√
4 + 5x

.

Solution: We make a substitution 4 + 5x = u2 which means 5dx = 2udu and so

∫ 1

0

(x+ 2)dx√
4 + 5x

=
1

5

∫ 3

2

u2−4
5

+ 2

u
2udu =

2

25

∫ 3

2

(u2 + 6)du =

= 2
25
(u

3

3
|32 + 6u|32) = 2

25
(19
3
+ 6) = 74

75
.

Hence

∫ 1

0

(x+ 2)dx√
4 + 5x

=
74

75

Problem 4. Find the value of the definite integral

∫ 8

0

3x− 2√
9 + 2x

dx.

4.4 Integration by parts

The idea of this technique is based on the product rule of differentiation from Calculus
I: (fg)′ = f ′g + fg′ where f and g are differentiable functions. We are mostly concerned
with definite integrals, so by FTC, we have

(4.3)

∫ b

a

f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x)dx.

Let us see the most standard applications of this formula.

Problem 1. Find the value of the definite integral

∫ π

0

x cosxdx.

Solution: We can write the integral as

∫ π

0

x
d

dx
(sinx)dx and so, we can use the formula

(4.3), for f(x) = x and g(x) = sinx. We can continue,∫ π

0

x
d

dx
(sinx)dx = f(x)g(x)|π0 −

∫ π

0

d

dx
(x)(sinx)dx⇒

∫ π

0

x cosxdx = cosx|π0 = −2 .

P roblem 2. Find the value of the definite integral

∫ e

1

lnx

x2
dx.
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Solution: We can write the integral as

∫ e

1

(lnx)
d

dx
(−1

x
)dx and so, we can use the formula

(4.3), for f(x) = ln x and g(x) = − 1
x
. We can continue,∫ e

1

lnx

x2
dx = f(x)g(x)|e1 −

∫ e

1

d

dx
(lnx)(−1

x
)dx⇒

∫ e

1

lnx

x2
dx = −1

e
+

∫ e

1

1

x2
= (−1

x
)|e1 −

1

e
=

e− 2

e
≈ 0.264241118 .

4.4.1 Sample Final Exam and solutions

1. Find the first derivative of the functions:

(a) f(x) = (cos 2x)3(sin 3x)2 (b) g(x) =
√
x− x2

(c) h(x) = ln(x+
√
x2 + 1) (d) i(x) = e−2x sec(3x)− arctan(sinx)

(e)j(x) =
1 + x

(2− x)2
(f)k(x) = arcsin(x2)

Solution: (a) Using the product formula and the derivatives of sine and cosine, we get

f ′(x) = −6(cos 2x)2 sin 2x sin2 3x+ 6(cos 2x)3 sin 3x cos 3x .

(b) The derivative of g is

g′(x) =
1− 2x

2
√
x− x2

.

(c) We have seen, several times, that h′(x) =
1√

x2 + 1
.

(d) The derivative is

i′(x) = −2e−2x sec(3x) + 3e−2x sec(3x) tan(3x)− cosx

1 + sin2 x
.

(e) Using the quotient rule and the product rule, we get

j′(x) =
(2− x)2 − (1 + x)2(2− x)(−1)

(2− x)4
=

2− x+ 2 + 2x

(2− x)3
or
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j′(x) =
4 + x

(2− x)3
.

(f) Simply, he chain rule gives

k′(x) =
2x

1− x4
.

2. Compute an antiderivative of each of the following functions:

(a) f(x) =
x2 + 2x+ 3

(x+ 1)2
(b) g(x) = x sec2(x2 + 1)

(c) h(x) = 2x+1
x2−4

(d) i(x) =
1

1 + 4x2

Solution: (a) We observe that f(x) = x2+2x+1+2
(x+1)2

= 1 + 2
(x+1)2

. This implies that

∫
f(x)dx = x− 2

x+ 1
+ C .

(b) Using the chain rule in reverse we see that

∫
g(x)dx =

1

2
tan(x2 + 1) + C .

(c) We write h(x) = 2x+1
(x−2)(x+2)

= 1
4
( 5
x−2

+ 3
x+2

) which gives

∫
h(x)dx =

5

4
ln |x− 2|+ 3

4
ln |x+ 2|+ C .

(d) Using the chain rule in reverse we see that

∫
i(x)dx =

1

2
arctan(2x) + C .

3. Water is filling up a pool in the shape shown below, at a rate of 5 ft3/min. How fast
is the water level rising when it is 4 ft deep (at the deep end)?
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Figure 1

Solution: We refer to Figure 1 above. We need to find the volume of the water in terms of
h (the depth at the deep end). The formula is simply the volume of a prism, i.e., the area
of the trapezoid ABCD times the other dimension, which is 10 ft: V = Area(ABCD)10.
From the similarity of the triangles CEB and FGB, we get CE

FG
= h

BG
or CE = 10h

8
= 5h

4
.

Then the area of the trapezoid ABCD is A = (CD+AB)h
2

. Hence, the volume is

V = 10
[5h
4
+ 10 + 10]h

2
=

25

4
h(h+ 16) =

25

4
(h2 + 16h).

Differentiating, we obtain dV
dt

= 25
4
(2h + 16)dh

dt
= 25

2
(h + 8)dh

dt
. Substituting h = 4

and dV
dt

= 5 gives
dh

dt
=

1

30
≈ 0.03 ft/min .

4. Calculate the definite integral I :=

∫ e

1

(x2 +
1

x2
) lnxdx.

Solution: Changing the variable x = es

I =

∫ 1

0

(e2s + e−2s)sesds =

∫ 1

0

(e3s + e−s)sds.

We use the formula we did in class and get

I = e3s(s/3− 1/9) + e−s(s/(−1)− 1/(−1)2)|10 ⇒
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I =
2e3

9
− 2

e
+

10

9
.

5. Fundamental Theorem of Calculus.

Solution: (i) Given a Riemman integrable function f on [a, b], with an antiderivative F ,

then
∫ b

a
f(x)dx = F (b)− F (a).

(ii) If f is continuous on [a, b] then F (x) =
∫ x

a
f(t)dt has the property that F ′(x) =

f(x) for all x ∈ [a, b].

4.5 The logarithmic function

Let us define the logarithmic function by f(x) :=
∫ x

1
1
t
dt, for all x > 0. First, we want to

prove that f(ab) = f(a) + f(b) for all a, b > 0. This can be accomplished by observing
that

f(ab)− f(a) =

∫ ab

a

1

t
dt

t=as
=

∫ b

1

1

as
ads =

∫ b

1

1

s
ds = f(b),

which proves the essential identy which characterizes logarithmic functions. We observe
that f(1) = 0 and f ′(x) = 1

x
by the Fundamental Theorem of Calculus. This implies that

f ′(x) > 0 for all x. We conclude that f is a stritly increasing function on (0,∞). By
the property we have established f(2n) = nf(2) → ∞ and so we have limx→∞ f(x) = ∞,
limx→0 f(x) = −∞ and so f is a bijection from (0,∞) into (−∞,∞). Let us denote by e
the solution of the equation f(x) = 1. In other words, we have f(e) = 1. Consider now
the inverse function of f and let us denote that by g. Then g : (−∞,∞) → (0,∞) is a
function with the following properties:

g(1) = e, g(0) = 1, g(x+ y) = g(x)g(y), x, y ∈ R.

If we set a = g(x) and b = g(y), we observe that f(ab) = f(a) + f(b) or g(x)g(y) =
ab = g(f(a) + f(b)) = g(x + y) proving the above identity. This implies g(nx) = g(x)n

for every real number x and every natural number n. In particular is x = 1
n
we obtain

e = g(1) = g(1/n)n or g(1/n) = e1/n. Also, if x = 1
m
then g(n/m) = g(1/m)n = (e1/m)n =

en/m so g(r) = er for every positve rational number r. Hence, g(x) = ex for all x. In order
to conclude that g is what we consider to be the natural exponential function we have to
prove that e = limn→∞(1 + 1

n
)n. This is equivalent to f(e) = limn→∞ nf(1 + 1

n
) or f(e) =

limx→0
f(1+x)−f(1)

x
= f ′(1) = 1. This is correct by the definition of e. So, we conclude that

f(x) = ln x and g(x) = ex where e = limn→∞(1 + 1
n
)n ≈ 2.7182818284590452354.
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4.6 The trigonometric functions

In this section we want to do something similar and build the trigonometric functions
using integration. Let us define first f(x) =

∫ x

0
1√
1−t2

dt for all x ∈ (−1, 1). We observe

that f ′(x) = 1√
1−x2 > 0 if x ∈ (−1, 1) and so f is strictly increasing. The integral

above for x = 1 is an improper integral of second type which is convergent. Hence,
f(1) is well-defined by

∫ 1

0
1√
1−t2

dt value which we will denote by a. Then f is a one-

to-one map from [−1, 1] into [−a, a], and we can call its inverse g. We observe that
g′(x) = 1

f ′(g(x))
=

√
1− g(x)2 for all x ∈ (−a, a). We can introduce h(x) =

√
1− g(x)2,

for all x ∈ [−a, a]. This gives the usual Pythagorean identity g(x)2 + h(x)2 = 1 if
x ∈ [−a, a]. One may check easily that∫ √

1− t2dt =
1

2
(x
√
1− x2 + f(x)) + C,

Which implies that

1

2
Area(Unit Disk) =

∫ 1

−1

√
1− t2dt =

π

2
= a =⇒ x =

π

2
.

Then h′(x) = − g(x)g′(x)√
1−g(x)2

= −g(x) for all x ∈ (−a, a). Then g′′(x) = h′(x) = −g(x),
which means g is a twice differentiable function satisfying g′′ + g = 0, g(0) = 0 and
g′(x) = 1. There is only one such function so g(x) = sin(x), x ∈ (−π

2
, π
2
). We then have

h(x) = cos x, and we can extend these two function by symmetry first, g(a−x) = g(a+x),
and then by periodicity g(x+ 4a) = g(x). One can prove the usual formulae

cos(x+ y) = cos x cos y − sinx sin y, x, y ∈ R,

sin(x+ y) = sinx cos y + cosx sin y, x, y ∈ R,

using the uniquencess of the solution of the differential equation u′′ + u = 0 with initial
conditions. Once we have identified g and h we can construct easily the other trigono-
metric functions: tanx = g(x)

h(x)
defined for all x where h is not zero, cotx = g(x)

h(x)
, x ̸= kπ,

etc.



Chapter 5

Parametric Equations

Quotation:

“One of the greatest minds of all times!” Norman John Wildberger
www.youtube.com/user/njwildberger
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5.1 Some classical parametrizations

The most elementary curves that are at the heart of Euclidean geometry are clearly lines
and circles. For a line in the plane the most classic equation is given by

(5.1) ax+ by + c = 0

where either a or b is not equal to zero. Suppose that we have a point on this line, say
P (x0, y0). Then a classical parametrization of the line (5.1) is given by

(5.2)

{
x = x0 + bt

y = y0 − at, t ∈ R.

One can easily see that substituting x and y, given by (5.2), into (5.1), results in the
equality ax0 + by0 + c = 0 which is assumed to be true.

In practice, we often need to write the equation of a line determined by two distinct
points, say A(xA, yA) and B(xB, yB). A nice and convenient way to write such an equation
is to employ the conventional linear algebra approach (using determinants):

(5.3)

∣∣∣∣∣∣
x y 1
xA yA 1
xB yB 1

∣∣∣∣∣∣ = 0 ⇔ (yA − yB)x− (xA − xB)y + (xAyB − xByA) = 0.

We can see that A and B are points on this line, either by an algebra exercise or by
recalling some properties of determinants (a determinant with two identical rows is zero).
We also have that a determinant whose row is a linear combination of the others is equal
to zero too. Hence, the next parametrization comes naturally

(5.4)

{
x = (1− t)xA + txB

y = (1− t)yA + tyB, t ∈ R.

This parametrization has the advantage that for t = 0 we obtain the point A and for
t = 1 we end up at B. Moreover, every point on the segment AB is given by a value of
the parameter t ∈ [0, 1], and vice versa.

Suppose we have two other points, C(xC , yC) and D(xD, yD). How do we determine
the intersection of AB and CD? Of course, assuming that the two segments are not
parallel, we can simply plug into the equation of CD the parametrization (5.4)
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(5.5)

∣∣∣∣∣∣
(1− t)xA + txB (1− t)yA + tyB 1− t+ t

xC yC 1
xD yD 1

∣∣∣∣∣∣ = 0

and solve for t:

(5.6) t = ti =

∣∣∣∣∣∣
xA yA 1
xC yC 1
xD yD 1

∣∣∣∣∣∣∣∣∣∣∣∣
xA − xB yA − yB 0
xC yC 1
xD yD 1

∣∣∣∣∣∣
,

which exists precisely when

∣∣∣∣∣∣
xA − xB yA − yB 0
xC yC 1
xD yD 1

∣∣∣∣∣∣ ̸= 0.

Problem 1

Use this information to prove Menlaus’ Theorem and Ceva’s Theorem.

The standard parametrization of the unit circle:

(5.7)

{
x = cos t

y = sin t, t ∈ [0, 2π).

Problem 2

A cow is tied to a silo with radius by a rope just long enough to reach the

opposite side of the silo (cylinder of radius r). Find the area available

for grazing by the cow.



94 CHAPTER 5. PARAMETRIC EQUATIONS

-10 -5 5

-10

-5

5

10

Figure 1

Solution: The cow is going to graze an area which is the inside of the curve depicted in
Figure 1, which is formed by an involute and a semicircle, minus the area of the circle of
radius r (the inside of the silo). We are going to choose the axes as in Figure 1 above. So,
the parametrization of the curve that is to the right of the y-axis (the involute) is given
by 

x(t) = r + r(cos t+ t sin t)

y(t) = r(sin t− t cos t),

t ∈ [−π, π],

and the part to the left is a semicircle or radius πr centered at the origin. We observe
that the involute is a curve explicit with respect to y and so we can use the formula for
area given by ∫ πr

−πr

xdy.

Then, the area grazed is given by

A =
(πr)2π

2
+

∫ π

−π

x(t)y′(t)dt− πr2.

Since y′(t) = r(cos t− cos t+ t sin t) = rt sin t we see that the integral we have to compute
equals

I =

∫ π

−π

x(t)y′(t)dt = r2
∫ π

−π

(1+cos t+t sin t)t sin tdt = r2
∫ π

−π

(t sin t+t sin t cos t+t2 sin2 t)dt.
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So, let us compute first (by parts)

I1 =

∫ π

−π

(t sin t)dt = t(− cos t)|π−π +

∫ π

−π

(cos t)dt = π − (−π) = 2π.

Then the second (also by parts) is

I2 =

∫ π

−π

(t sin t cos t)dt =
1

2

∫ π

−π

(t sin 2t)dt =
1

2
[t(−cos 2t

2
)|π−π +

∫ π

−π

cos 2t

2
dt] = −π

2
.

Finally the last integral is given by

I3 =

∫ π

−π

(t2 sin2 tdt =
1

2

∫ π

−π

t2(1− cos 2t)dt =
1

2
[
t3

3
|π−π −

∫ π

−π

t2 cos 2tdt] ⇒

I3 =
1

2
[2
π3

3
− t2

sin 2t

2
|π−π +

∫ π

−π

2t
sin 2t

2
dt] =

π3

3
− π

2
.

Therefore, the area A is

A = r2(
π3

2
+
π3

3
+ 2π − π

2
− π

2
)− πr2 =

5π3r2

6
. □



96 CHAPTER 5. PARAMETRIC EQUATIONS



Chapter 6

Curves in space, Curvature and
TNB-frame

Quotation:

“Read Euler, read Euler, he is the master of us all!” Pierre-Simon Laplce

Suppose the curve is given parametrically by r(t) = [f(t), g(t), h(t)]. The derivative
of r is r′(t) = [f ′(t), g′(t), h′(t)] and the length of the curve between point A = r(t0) and
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point B = r(t) is given by

s(t) =

∫ t

t0

|r′(u)|du =

∫ t

t0

√
f ′(u)2 + g′(u)2 + h′(t)2du.

As an example, let’s compute the length of a helix with parametric equations r =
[r cos t, r sin t, ht], for t ∈ [0, 2π]:

L =

∫ 2π

0

√
r2 + h2du = 2π

√
r2 + h2.

The unit tangent vector is defined by

T (t) =
r′(t)

|r′(t)|

provided r′(t) ̸= 0 (a smooth curve). The curvature is defined intrinsically in terms of
the arc-length parametrization

(6.1) κ = |T (s)
ds

| ⇒ κ =
|r′ × r′′|
|r′|3

.

Indeed, ds
dt

= |r′| and since r′ = |r′(t)|T (t) = ds
dt
T (t) if we differentiate again we get

r′′ = d2s
dt2
T (t) + ds

dt
T ′(t). Then taking the cross product with r′ implies

r′ × r′′ = (
ds

dt
)2T (t)× T ′(t) = |r′|2T (t)× T ′(t).

Hence, we have |r′ × r′| = |r′|2|T (t)× T ′(t)| = |r′|2|T ′(t)| becasue T is a unit vector and
T and T ′ are perpendicular. Therefore, we have

k = |T (s)
ds

| = |T ′|
|r′|

=
|r′ × r′′|
|r′|3

.
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By definition N = T ′

|T ′| the derivative being taken with respect to t (the parameter).
Using chain rule

T ′ =
dT

dt
=
dT

ds

ds

dt
= |r′|dT

ds
.

Hence, we obtain
dT

ds
=

T ′

|r′|
=

|T ′

|r′|
|N = κN ⇒

(6.2)
dT

ds
= κN.

Let us see a nice corollary of (6.2). Suppose that a unit vector u is fixed in space
and let φ be the angle that T makes with u, and ψ be the angle that N makes with u.
Then we have

(6.3) κ = |dφ
ds

sinφ

cosψ
|,

which reduces to κ = |dφ
ds
| for a plane curve and u a unit vector in that plane. This can

be derived in the following way: first differentiate cosφ = T · u with respect to s. Since
u is fixed, we get

(− sinφ)
dφ

ds
=
dT

ds
· u = κN · u = κ cosψ,

which gives (6.3).
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Joke T ime!

Break for a short shot!



Chapter 7

Inequalities

“All analysts spend half their time hunting

through the literature for inequalities which
they want to use and cannot prove.” - G.H.

Hardy

Let us start with the classical inequality of Bernoulli:

(7.1) (1 + x)n ≥ 1 + nx, n ∈ N, x > −1.

We are going to use induction for this. For n = 1, the inequality (7.1) is trivial. Assuming
that (1+x)n ≥ 1+nx we multiply by (1+x) > 0 and get (1+x)n+1 ≥ (1+nx)(1+x) = 1+
(n+1)x+nx2 ≥ 1+(n+1)x since nx2 ≥ 0. Then, we conclude that (1+x)n+1 ≥ 1+(n+1)x
which ends the inductive step. Therefore by PMI, (7.1) is true for all n ∈ N.

Theorem 7.0.1. [Mediant Inequality -Farey fractions] Given four positive real num-
bers a, b, c and d such that a

b
< c

d
then a

b
< a+c

b+d
< c

d
.
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The proof of it is simply algebra. We observe that D = c
d
− a

b
= bc−ad

bd
and by

hypothesis D > 0. Then, we have

a+ c

b+ d
− a

b
=
ab+ bc− (ab+ ad)

b(b+ d)
=
bc− ad

b(b+ d)
= D

d

b+ d
> 0 and

c

d
− a+ c

b+ d
=
bc+ dc− (ad+ dc)

d(b+ d)
=
bc− ad

b(b+ d)
= D

b

b+ d
> 0.

This shows the inequality but also something more, which is an estimate of the distance
of a+c

b+d
relative to the endpoints of the interval (a

b
, c
d
).

Remark: If we apply this construction several times and start with rational numbers, this
gives a simple way of constructing more rational points inside of that interval. Of course,
one can accomplish that same thing with regular averaging: u < v implies u < u+v

2
< v.

Some less standard application of the induction principle is the following proof of AM-
GM-inequality (arithmetic mean-geometric mean inequality). We need to show that given
a1, a2, ...,an non-negative numbers we have

(7.2)
1

n

n∑
i=1

ai ≥ (
n∏

i=1

ai)
1/n.

First let us observe that we can assume that the numbers are strictly positive (if one of
the numbers is zero, the right hand side of (7.2) is zero). Without loss of generality, we
may assume that

∏n
i=1 ai = 1. Indeed, if the product is not equal to one but say P , we

can reduce to this situation by emplying the substitution bi = ai/P
1/n, i = 1, 2, ..., n.

For the Basis Step, we need to prove that (1/2)(a+b) ≥ 1 if ab = 1. This is true since
we can write (1/2)(a+b) ≥ 1 as (

√
a−

√
b)2 ≥ 0. For the Inductive Step, we assume that for

n positive numbers {ai} whose product is 1, we have a1+a2+...+an ≥ n. We need to show
that given n+1 positive numbers bj, whose product is 1, then b1+b2+...+bn+bn+1 ≥ n+1.

We know that b1b2...bnbn+1 = 1. We notice that not all these numbers can be greater
than 1. Otherwise the product is strictly greater than one. Hence, there exists bi ≤ 1.
Similarly, not all the b′s can be less than 1. Thus, there exists bj (i ̸= j) such that bj ≥ 1.
Without loss of generality, we may assume that i and j are 1 and 2. By the induction
hypothesis, b1b2 + b3 + ... + bn+1 ≥ n. Now, let us observe that b1 + b2 ≥ b1b2 + 1 is
equivalent to 0 ≥ (b1 − 1)(b2 − 1) (true by our assumption on b1 and b2). Therefore,

b1 + b2 + b3 + ...+ bn+1 ≥ b1b2 + 1 + b3 + ...+ bn+1 ≥ n+ 1,

which finishes the Induction Step. Hence by PMI, we must have (7.2) true for every n
non-negative numbers.
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Remark: It is important to observe that equality in (7.2) happens only if all numbers
are equal. This is indeed the case if n = 2 since (

√
a−

√
b)2 = 0 implies a = b. If n > 2,

let us check this claim by induction. In the reduction we did above having the product of
the numbers involved equal to 1, we may disregard the numbers which are already equal
to one. So, if all the numbers involved are different from 1, the inequality used, is a strict
inequality: b1+b2 > b1b2+1. As a result, b1+b2+b3+ ...+bn+1 > b1b2+1+b3+ ...+bn+1 ≥
n + 1 which contradicts the induction hypothesis. It remains that all numbers must be
equal if we have an identity in (7.2).

Excercise: Use induction to rearrange the above proof reducing (7.2) to the case a1 + a2 +
· · ·+ an = n.
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