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Preface

“It is impossible to be a mathematician
without being a poet in soul.” Sofia

Kovalevskaya

These lecture notes were written beginning in 2007 and continuing to this day, for my
students enrolled in the calculus classes. The initial goal was to look mostly at the material that
is usually covered in Calculus I, but with time some new topics emerged and now it is becoming
a project that is covering all that is considered to be part of the calculus sequence.

There are very many good calculus books out there, old and new, that have lots and lots
of information and beautiful problems. We used mainly Stewart ([8]) and Rogawski ([6]) as a
source of inspiration. We will refer to these textbooks for various proofs and problems.

Even though there are many topics in Calculus, the main concepts are just a few: limit,
continuity, derivative, and the definite integral. In these notes, we would like to take an ap-
proach that goes to the matter of things most of the time. The idea of using all transcendental
functions from the start has nevertheless good pedagogical advantages. The question is “how
do we introduce them to minimize the theoretical material needed to show all the characteristic
properties?”

Some textbooks eventually introduce, for example, the definitions of the logarithmic and
trigonometric functions using

v



lnx :=

∫ x

1

1

t
dt, x > 0 and arcsinx :=

∫ x

0

1√
1− t2

dt, x ∈ [−1, 1],

and the rest of the properties of all the elementary functions follow from these definitions once
the concept of definite integral is established, but that is a little too late in the development of
the theory. We almost like to go the route of Rudin ([7]), but that requires quite some work. It
is nevertheless appealing to say, we only need

(1) ez = 1 + z +
z2

2!
+
z3

3!
+ · · ·

for every complex number z and the rest of the other needed functions follow from this. The
main problem with doing so is that the treatment of series and sequences is left after the integral
calculus is developed. However, we will try to introduce some of those results as early as possible
to help with the understanding of the concept of limit.

We begin with the concept of limits and introduce the so-called fundamental limits.
Exemplifying the concept of limit with nontrivial situations is not just a matter of taste but also
a choice that we make to show the connection with the derivatives of the elementary functions.
Saying that limx→2 x

10 = 1024 is not really that surprising, but the following limit is quite
intriguing

(2) lim
x→0

(1 + x)
1
x = e ≈ 2.7182818284590452354 . . .

and we will call it a fundamental limit. Of course, we limit ourselves to only the limits that relate
to the main elementary functions used in calculus: power functions, exponential, logarithmic,
trigonometric, and inverse trigonometric functions.

Continuity is briefly studied, and some applications of the Intermediate Value Theorem
are given. This is mostly a prelude to the work needed with the concept of derivative and
the study of all differentiation rules. We then continue with usual applications such as related
rates problems, implicit differentiation, Newton’s approximation technique, and the Mean Value
Theorem and its corollaries. Finally, the concept of the Riemann integral and a few techniques
of integration are given after the Fundamental Theorem of Calculus (FTC) is discussed. We
have developed a series of exercises that are applications of use of both statements in (FTC).

One of the main problems with calculus is the construction of the primary object, which
is the real number system. This involves the concept of infinity and as Norman Wildberger is
pointing out, it is not of this world. But of course, mathematics is a construct of our mind. In
the definition (1), we don’t need to go and perform all the calculations involved. We think of it

vi
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as Eudoxus and Archimedes did:

a procedure that can get us as close as we want to a certain quantity. This is basically the
definition of the limit of Cauchy and then Weirstrass. That quantity can be well-known and
well-defined in terms of the unit (1), like 2, 3, 4, ..., 2/3, etc., or it can be more abstract as

√
2,

π, or e. We assume this to be given, and one can take the assumptions on the real numbers, R,
with the usual axioms of a complete, ordered field containing the rationals. Intuitively, we may
want to think of R, as the points on an oriented line:
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Chapter 1

Limits and The Main Elementary
Functions

Quotation: “To many, mathematics is a collection of theorems. For me, mathemat-
ics is a collection of examples; a theorem is a statement about a collection of examples
and the purpose of proving theorems is to classify and explain the examples...” John
B. Conway (Subnormal Operators, Pitman Advanced Publishing Program, 1981)

1.1 Basic Elementary Functions and Elementary Functions

What kind of functions do we have as examples in calculus? Most of the textbooks are called
Calculus with early transcendentals. Perhaps they should be called Calculus with early non-
algebraic functions. In this section we are going to explain the rationale for such titles.

In general we can divide the class of functions into two sets: algebraic and non-algebraic.
The basic algebraic functions are characterized by the following four properties

(a) the output for every real number in its domain can be obtained in a finite number
algebraic operations (addition, subtraction, multiplication or division) from the input,

(b) the rule or the algorithm of obtaining the output is the same for every value of the
input,

(c) the domain of such a function is the maximum posible within the real number system,

(d) if all the constants involved in the rule were rational numbers, then the output is
rational for every rational input.

A big class of such functions are polynomial functions. These are functions f defined
everywhere by a rule of the form

f(x) = a0x
n + a1x

n−1 + ...+ an

where a0, a1, ..., an are given and fixed real numbers and n is non-negative integer (which is
called the degree of the polynomial f). In particular we have constant functions (n = 0), linear
functions (n = 1), quadratic functions (n = 2), cubic functions (n = 3), quartic, quintic, etc.

3



4 CHAPTER 1. LIMITS AND THE MAIN ELEMENTARY FUNCTIONS

Another big class satisfying these properties is the set of rational functions. A rational
function g has a rule of the form

g(x) =
P (x)

Q(x)

where P and Q are polynomials with no common factors and the domain is the set of all real
numbers x such that Q(x) ̸= 0. Of a particular interest are those rational functions for which
Q has no real roots and as a result these are functions are defined for all real numbers. For
instance, a function given by the rule g(x) = x3−x

x2+1
, x ∈ R.

One may consider piecewisely defined functions by using rules that are either polynomials
or rational functions satisfying property (a), but such a function does not satisfy property (b)
if there are at least two rules used. One such function that actually can be defined piecewisely
is the absolute value:

(1.1) |x| =


x for x ≥ 0

−x for x < 0.

.

It can be also defined with only one rule as |x| =
√
x2, but the square-root is not an

algebraic operation. So, although this is a pretty simple function we will classify it as non-
algebraic.

What are other basic non-algebraic functions? Well, let us start with power functions,
such as functions h defined by a rule of the form

h(x) = xα, x ∈ D

where α is a real number that is not an integer, and D is the maximum possible domain, which
in general contains the set of positive real numbers. One of the key problems in this rule is
how do we calculate the output for let’s say a simple input. Suppose that α = 1

2 , so we are

talking about the square root function h(x) = x
1
2 , which has D = [0,∞). How do we calculate

h(2) =
√
2? This number has a long history in mathematics going back to the Greek school

and basically the discovery of irrational numbers. The Greeks had the false idea, for a long
time, that all numbers were rational and they built every single theorem in geometry based on
that. They were very puzeled when

√
2 came around as the diagonal of the unit square and they

clearly proved to be not rational (see the next section for their proof by infinite descent). To
compute the output we know that it requires an infinite sequence of algebraic operations. We
have the following formula that can be used to obtain square roots:

(1.2) (1 + x)
1
2 = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5 − ... |x| < 1,

but this requires an infinite number of terms and we will see the precise meaning of an identity
like (1.2) later in the calculus sequence. So most of these non-algebraic functions are going to
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be defined in a formal precise way later on. That is the reason for calling the calculus approach
using early transcendental functions, and we will use this approach too. It is true that most of the
outputs are transcendental numbers (a number which is not a zero of a polynomial with integer
coefficients as opposed to those numbers which are and they are called algebraic numbers) but
for instance

√
2 is algebraic (since it is one of the zeros of the equation x2 − 2 = 0). However,

to compute exactly the decimals of
√
2 will require an infinite non-periodic number of digits

(steps).

As a result, we will assume that the basic elementary functions we will be mentionig next
are well defined and all of their properties are already established. These functions are the
exponential and logarithmic functions, the trigonometric and inverse trigonometric functions.

Let us list a few properties of the power and exponential functions:

(1.3) (ab)α = aαbα, (aα)β = aαβ, aα+β = aαaβ, a, b > 0

and α, β are real numbers. Let us remember that we can define the power function (x → xα)
in terms of the exponential function as

x→ eα lnx

and for that reason the maximum domain contains (0,∞). The correspoding properties for the
logarithmic functions are

(1.4) loga u =
logab u

(1− logab b)
, log aα = α log a, loga uv = loga u+ loga v,

for all a, b, u and v > 0. The first property above is nothing else but the change of base
formula, which is usually written (if we denote ab by c) as

loga u =
logc u

logc a
, for all a, c, u > 0.

The most important properties of the trigonometric functions are

(1.5)
sin(α+ β) = sinα cosβ + cosα sinβ,

cos(α+ β) = cosα cosβ − sinα sinβ,

for all α, β ∈ R. These formulae are usually called the the addition trigonometric formulae,
from which all of the other trigonometric identities can be derived. For instance, one can easily
obtain the addition formula for the tangent function:

tan(α+ β) =
tanα+ tanβ

1− tanα tanβ
,

true for all α, β ∈ R such that α+ β is not an odd multiple of π
2 .
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The elementary function that we are going to use are then the functions obtained from
the basic ones using alll algebraic operations and in addition the composition operation. In top
or that we will see examples where the piecewise elementary functions are glued together. Let
us give just two examples:

j(x) =
[
log2(x

3 + 2x) + sin(x)
] 2
ex , and k(x) =

arcsin(2x + 32x)

arctan(x) + ln(2x+ 1)
.

Since the hyperbolic functions and their inverses are less known we are going to include them
here with their domains:

� sinh(x) = ex−e−x

2 , x ∈ R,

� cosh(x) = ex+e−x

2 , x ∈ R,

To avoid circular reasoning we have to be careful and only use the results in the develop-
ment of calculus that are not related to any of the non-algebraic functions when we are going
to define them.

1.2 Sequences and their limits

The idea of a limit is closely related to the concept of infinity in mathematics, and that has a long
history going back to the Greek school of mathematics. By the way, they didn’t like to talk about
infinity at all. There are mathematicians nowadays that only accept the discrete mathematics
and stay away from the concepts that involve the continuum. The existence itself of numbers
like

√
2, π or more general of irrationals is at the heart of this notion. Modern mathematics

has various constructions which incorporate this idea and that is the usually referred to as the
construction of the real number system (R).

Lets look at the number
√
2 which is known to be irrational and if we write it in base 10,

we can list a few decimals down

√
2 = 1.41421356237309504880168872420969807856967187537694807

3176679737990732478462107038850387534327641573 · · ·

but we will never be able to get the exact number this way since the decimals follow some
pattern that it is not periodic or easy to describe. The only exact definition is, that whatever
number is, it is positive, and its square is equal to 2. In other words, it is the solution of

x > 0, x2 = 2.

Then, the question is “how do we work with this number then ?” Even the existence of such
a number was questioned from the day of its inception, so to speak when the Pythagorean school
calculated the diagonal of a square of sides, say a, they realized that the diagonal (Figure1.1)
BD can be expressed as
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x

G

F

BA

D C

Figure 1.1: The history of
√
2

BD =
√
BC2 +DC2 =

√
2BC2 = BC

√
2.

But the big surprise was when they discovered that
√
2 was not rational (the language they used

was commensurable segments, referring to DB and DC). The reason of their bewilderment was
the belief that every number is rational, or in their words every two segments are commensurable,
i.e., they can be measured by some unit of measure in an exact number of steps. This assumption
leads one to conclude that for some, possibly very small, unit of measurement DB = a units
and DC = b units. Then the segment BE = (a− b) and BF = b− (a− b) = 2b−a. The triangle
BEF is also a right isosceles triangle (similar to ABD) and so the diagonal BF and the side
BE are smaller and still commensurable with the same unit. One can repeat this construction
over and over again until the two segments become so small that they are smaller than the unit.
Therefore, they cannot be measured exactly with that unit. This contradiction shows that the
side of the square and its diagonal cannot be commensurable. This was the first proof of the
irrationality of

√
2 which nowadays it is called a proof by the method of (infinite) descent.

But, from a calculus point of view this method tells us more. Since the diagonal BF =
BE

√
2, we conclude that

√
2 =

DB

DC
=
a

b
=
BF

BE
=

2b− a

a− b
.

Let us reverse this instead of descent, we want to do an ascent: let us set 2b− a = m and
a − b = n and solve for a and b. We obtain b = m + n and a = n + b = n +m + n = m + 2n.
Hence, we obtain

√
2 =

m

n
=
m+ 2n

m+ n
.

Let us see what happens if we apply this ascent and start with a fraction m
n which is just an

approximation of
√
2, say 3

2 . Then the next fraction is x2 = 3+2·2
3+2 = 7

5 ≈ 1.4. Then, we

get x3 = 7+2·5
7+5 = 17

12 ≈ 1.416 which is a better approximation of
√
2. In fact, let us look at

x23 =
289
144 = 2+ 1

144 and something similar can be said about x22 =
49
25 = 2− 1

25 . One can calculate
the next iteration and obtain x4 = 41

29 ≈ 1.4137931 with x24 = 2 − 1
841 which is very close to 2.
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The sequence of iterations continues

99

70
,
239

169
,
577

408
,
1393

985
, ...

a classical sequence in The On-Line Encyclopedia of Integer Sequences which is cataloged by
A155046. We say that {xn} is a sequence which is convergent to

√
2 and {x2n} is convergent

to 2. We notice that {xn} is a sequence of fractions and they approximate
√
2 as good as we

want but simply increasing the index n.

So, to answer our question, instead of working with
√
2, in practice, we simply work with an

approximation of it and it is convenient to select certain approximations. The approximations
above are optimal in the sense that the denominators are the smallest in order to achieve a
certain desired error. We have a very specific definition of the convergence of a sequence and
it may look complicated, and if it does no wonder because it took quite a long time in the
development of mathematics to arrive at it (due to Augustin-Louis Cauchy )

Definition 1.2.1. We say that the number L is the limit of the sequence {an} if for every ϵ > 0
there exists an index n (which depends on ϵ) such that |am −L| < ϵ for all m ≥ n. A short way
to express that {an} has limit L (or an converges to L) is lim

n→∞
an = L.

We are not going to use this definition that much but it is arguably one of the most
important concepts in calculus and it is usually the basis of checking all the properties that
limits of sequences have. Let us list the main properties and then use the definition to prove
one which is less standard (see Theorem 1.2.6):

(1.6)

1. lim
n→∞

c = c 2. lim
n→∞

xn ± yn = lim
n→∞

xn ± lim
n→∞

yn 3. lim
n→∞

cxn = c lim
n→∞

xn

4. lim
n→∞

xnyn = ( lim
n→∞

xn)( lim
n→∞

yn), 5. lim
n→∞

xn
yn

=
limn→∞ xn
limn→∞ yn

,

provided that lim
n→∞

xn and lim
n→∞

yn exist and for the Property 5, {yn} is a a sequence of non-

zero real values and lim
n→∞

yn ̸= 0. These properties are indeed properties as long the arithmetic

operations make sense. So as long as {xn} and {yn} are rational numbers and their limits too,
these are real properties. But if we take the limits to be real numbers which are not rational,
these have to turn into definitions. So, for instance

√
2 +

√
3 is the limit of the sum of two

sequences of rational numbers convergent to
√
2, and

√
3 respectively. We are not going to go

into these kind of details since this is part of the construction of real numbers which can be done
in several ways. We will just refer the interested reader to the text of Walter Rudin (see [7]) for
an account of the so called the Dedekind cuts construction.

On simple corollary of the definition of convergence is the so called Squeeze Theorem (we
will see this again for functions).

Corollary 1.2.2. Given three sequences {xn}, {yn},{zn}, such that

xn ≤ yn ≤ zn, for all n ∈ N, and

https://oeis.org/
https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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lim
n→∞

xn = lim
n→∞

zn = L,

then {yn} is also convergent to L.

The same concept of convergence works for a sequence of complex numbers. The set of
complex numbers

C = {a+ bi|a, b ∈ R}

can be organized with addition ((a + bi) + (c + di) = (a + c) + (b + d)i) and multiplication
(a+bi)(c+di) = (ac−bd)+(ad+bc)i) that are typically taught in college algebra together with
some of their properties which are very similar to the properties of addition and multiplication
of real numbers. The only difference is that the absolute value here is defined to be |a + bi| =√
a2 + b2 which is nothing else but the Euclidean distance from the origin to the point (a, b).

For a fixed complex number z = x + iy two very important sequences in calculus are
defined by

(1.7) zn =
(
1 +

z

n

)n
, and wn = 1 + z +

z2

2!
+
z3

3!
+ · · · z

n

n!
.

It turns out that these two sequences have the same limit which is denoted by ez. We have this
way a function which has the property

ez+w = ez · ew, z, w ∈ C.

The fact that the limits in (1.10) exist and the above property takes place is usually proved in
an upper level course in analysis. This allows to introduce the transcendental functions in a
different way: ex = |ez| and cos y + sin yi = eiy, x, y ∈ R.

In order to be able to identify sequences which are convergent, especially when we do not
know what their limit migth be, there are few ingredients that one can use (they are based on
the axiomatics of the real numbers).

Theorem 1.2.3. Every monotone and bounded sequence is convergent.

A monotone sequence {xn} is a sequence which satisfies xn+1 ≤ xn for all n ∈ N
(monotone non-increasing), or xn ≤ xn+1 for all n ∈ N (monotone non-decreasing). A bounded
sequence {xn} is a sequence with the property that for some bound M , |xn| ≤ M for all
n ∈ N. When the inequalities are strict we say the sequence is strictly increasing or strictly
decreasing (and sometime simply increasing or decreasing). For an unbounded sequence, a
particular situation appears when the sequence is said to converge to infinity. This actually
means that no matter how big M is, one can find an index n so that xm > M for all m ≥ n.

Let us take an example here which is classic and goes back to L. Euler (Leonard Euler).
Suppose that our sequence {xn} is defined by

xn = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
.

https://en.wikipedia.org/wiki/Leonhard_Euler
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A few terms of this sequence are listed next

{1, 5
4
,
49

36
,
205

144
,
5269

3600
,
5369

3600
,
266681

176400
,
1077749

705600
,
9778141

6350400
,
1968329

1270080
, · · · }

This sequence is clearly strictly increasing since xn+1 = xn + 1
(n+1)2

> xn for all n. To see that

it is bounded we will use the following trick (which is called telescopic sums):

xn = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
< 1 +

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n
=

1 + (
1

1
− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n− 1
− 1

n
) = 2− 1

n
< 2.

Hence, x1 < x2 < · · · < xn < 2, and so by Theorem 1.2.3 this sequence must be convergent to
something. It was not known what the limit was for a long time and L. Euler arrived by some
argument which was really clever, that the limit must be π2

6 . If we use a computer we can see
that

x100 ≈ 1.634983900..., and
π2

6
≈ 1.644934...,

so the convergence is quite slow (i.e., it takes a lot of terms to get close to the limit, whithin
a decimal point). The proof of this fact is included in the section about series since it requires
a little more knowledge in calculus. At this point it is not known where does the following
sequence converge

1 +
1

23
+

1

33
+ · · ·+ 1

n3
→ ζ(3) =?,

but its limit is denoted by ζ(3).

Exercise 1: Show that the sequence defined recursively by z1 = 1, and zn+1 =
√
2 + zn, for

n ≥ 1 is convergent to 2.

Another classical sequence is the one which is related to adding numbers in a geometric
progression. We consider r a real number such that r ∈ [0, 1), and define the sequence sn =
1 + r + r2 + · · · + rn, n ∈ R. We prove that this sequence converges to 1

1−r . This is true since

sn = 1−rn+1

1−r and using Bernoulli’s Inequality (7.1) one can show that rn is convergent to zero
(left as an exercise to the reader). We usually write this as

(1.8) 1 + r + r2 + · · ·+ rn + · · · = 1

1− r
,

which is in fact true for all real r ∈ (−1, 1).

What if the sequence is not monotone? Cauchy had the following simple answer to this
question.

Theorem 1.2.4. Every Cauchy sequence is convergent. Aslo, every convergent sequence is
Cauchy.

Definition 1.2.5. A sequence {xn} is Cauchy if for every fixed ϵ > 0, we have |xm − xn| ≤ ϵ
for all m,n ≥ k with k ∈ N and index which depends on ϵ.
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We can see that a lot of these definitions and techniques that deal with convergence
involve inequalities. Perhaps it is not far from true that calculus, in its basic proofs, boils down
to inequalities. I would say that the “magic” of mathematics is like the magician’s trick: it
consists of three acts. The pledge, the turn, and the prestige. Using this analogy, the
calculus results are the prestige of turning inequalities into equalities. A lot of inequalities that
we are going to use are proved in Chapter 7.

A simple corollary of Theorem 1.2.4 (or simply just the definition) is that if a sequence
{xn} has the property that {x2n} and {x2n+1} are convergent to ℓ then the {xn} is convergent
to ℓ.

Using the definition of convergence and Theorem 1.2.4, to exemplify, let us prove a property
which can be generalized easily.

Theorem 1.2.6. Suppose that {an} is a sequence of non-negative rational numbers which has
the following property that a2n is convergent to L. Then, the sequence {an} is convergent to some
real number a and a2 = L.

Proof: We need to treat the case L = 0 separately. In this case a = 0, indeed an < ϵ is
equivalent to a2n < ϵ2 and so since we know that for some nϵ2 , the last inequality is true for
n > nϵ2 , it shows that an → 0. Hence, we may assume that L > 0.

Since L > 0 there exists q ∈ N big enough so that 1
q2
< L. Using the definition of limit

we know that a2n >
1
q2

for n > n1. Since First let us show that {an} is Cauchy. We have

|an − am| = |a2n − a2m|
an + am

<
|a2n − a2m|

2
q

, m, n > n1.

By triangle inequality |a2n−a2m| ≤ |a2n−L|+|L−a2m|, and so from the definition of the convergence
a2k → L we can find an n2 such that |a2n − L| ≤ ϵ/2 for all n > n2. Putting together these facts
gives

|an − am| < qϵ

4

for all m,n > max(n1, n2). This shows that {an} is Cauchy and hence it is convergent to a limit
say a. By Property (4) in 1.6 (or by definition) we get a2 = L.

It is not hard to see that for every non-negative real number L there exists a sequence
an of rationals such that a2n → L (using the idea of averaging or the mediant inequality 7.0.1).
Also, the number a does not depend of the sequence of rationals {an} we choose. Then we
can apply this theorem and define the “square root” function by f(L) = limn an which has the
property f(L)2 = L. The notation for this function is

√
L, i.e., f(L) =

√
L. It is then true that

limn
√
xn =

√
limn xn with essentially the same proof as in the Theorem 1.2.6. In a similar way

we can construct any root function g(x) = x
1
m where m ∈ N. We notice that in the case m odd

we can define these function on the whole real line. So, we have a new property that we can
add to those in (1.6):

lim
n→∞

(xn)
1
m = ( lim

n→∞
xn)

1
m .

https://www.youtube.com/watch?v=fU0uiGAm_SY
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Exercise 2: Show that the sequence defined earlier by x1 = 3
2 and xn+1 = xn+2

xn+1 for n ≥ 1,

is convergent to
√
2.

This sequence is known in the literature as the sequence of continued fractions of
√
2.

One may ask in connection with this continued fraction sequence “how fast” is it convergent to√
2? It turns out this is a little difficult to answer but in some other situations we can use the

following important tool called the Stolz–Cesàro theorem.

Theorem 1.2.7. Let {an} and {bn} be two sequences of real numbers. Assume now that an → 0
and bn → 0 while {bn} is strictly decreasing. If

lim
n→∞

an+1 − an
bn+1 − bn

= ℓ then lim
n→∞

an
bn

= ℓ.

There is another version of this:

Theorem 1.2.8. Let {an} and {bn} be two sequences of real numbers. Assume now that bn → ∞
while {bn} is strictly increasing. If

lim
n→∞

an+1 − an
bn+1 − bn

= ℓ then lim
n→∞

an
bn

= ℓ.

Let us work an example here to see how this theorem can be used. Suppose that we want
to compute the following limit

lim
n→∞

1k + 2k + ...+ nk

nk+1

where k ∈ N. We can apply Theorem 1.2.8, and obtain

lim
n→∞

1k + 2k + ...+ nk

nk+1
= lim

n→∞

(n+ 1)k

(n+ 1)k+1 − nk+1
=

1

k + 1
,

using the binomial formula (n+ 1)k+1 = nk+1 + (k + 1)nk + · · · and the simple fact that if two

polynomials P and Q have the same degree then P (n)
Q(n) → p0

q0
where p0 is the leading coefficient

of P and q0 is the leading coefficient of Q.

Exercise 3: Use Stolz–Cesàro to prove that

lim
n→∞

11 + 22 + ...+ nn

nn
= 1.

Exercise 4: Use Bernoulli’s Inequality to prove that if r ∈ [0, 1) then limn→∞ nrn = 0 and
then prove that

(1.9) 1 + 2r + 3r2 + · · ·+ nrn−1 + ... =
1

(1− r)2
.

Exercise 5: Use Bernoulli’s Inequality and Squeeze Theorem to prove that if a > 0 then
limn→∞ a1/n = 1

https://en.wikipedia.org/wiki/Continued_fraction
https://en.wikipedia.org/wiki/Stolz–Cesàro_theorem
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Exercise 6: Consider the recurrent sequence {xn} defined by x1 ∈ (0, 1) and xn+1 =
xn(1− xn) for n ≥ 2. Show that xn → 0 and nxn → 1.

Exercise 7: Consider the recurrent sequence {xn} defined by x1 ∈ (0, 1), λ ∈ (0, 1) and
xn+1 = xn(1− λxn) for n ≥ 2. Show that xn → 0 and find the limit of {nxn}.

1.2.1 Limits in the geometry of curves

Historically speaking the idea of limit arived also in the geometry, first with Archimedes who
wanted to compute various areas and volumes of regions or solids that where bounded by more
complicated surfaces than planar regions. For instance, the volume of a pyramid is such an
example. One can say that Archimedes was the discoverer of the integral calculus. Unfortunately
most of his work was not known to the wide world until recently The method of Archimedes.

Another problem in mathematics which led to the concept of limit was the construction
of a tangent line to a curve which is not a circle. For a circle we know that the tangent line at
a point on a circle, to this circle, is the line perpendicular to the radius coresponding to that
point. The question at this point is “how do we define the tangent line to a curve in general
and how do we construct it?” Let us look into a simple curve which is not that much different
of the circle but it was studied a lot by the ancient Greeks: the ellipse. It is well known that
the equation of a general ellipse having the origin as its center and the semi-axes the axes of
coordinates is

x2

a2
+
y2

b2
= 1.

This is an algebraic curve, i.e., a curve given implicitly by an equation of the form P (x, y) =
0 where P is a polynomial in two variables. For example the graph of the algebraic curve
xy + x2 + xy2 + y4 = 1 is shown below

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

4

together with the tangent line at (2, 1). For an algebraic curve we can take the definition of the
tangent line be the line y = b+m(x− a) where (a, b) is a point on the curve P (x, y) = 0 where
m is determined with the property the equation P (x, b + m(x − a)) = 0 has x = a a root of
multiplicity at least 2. we know that x − a has is a root because P (a, b) = 0. Hence, we have
the factorization P (x, b + m(x − a)) = (x − a)Q(x) and so m is determined by the condition
Q(a) = 0. One can work it out and figure out that the equation of the tangent line in the above
figure is 3x+ 5y = 11. Let us prove the following theorem.

https://www.wilbourhall.org/pdfs/archimedes/archimedesHeiberg.pdf


14 CHAPTER 1. LIMITS AND THE MAIN ELEMENTARY FUNCTIONS

Theorem 1.2.9. The equation of the tangent line to the ellipse x2

a2
+ y2

b2
= 1 at the point on the

ellipse (u, v) is given by
ux

a2
+
vy

b2
= 1.

Indeed, let us check that the equation x2

a2
+ [v+m(x−u)]2

b2
= 1 has a double root at x = u if

and only if m = −ub2

a2v
(v ̸= 0). The equation is equivalent to

x2

a2
+
v2

b2
+

2vm(x− u)

b2
+
m2(x− u)2

b2
= 1.

But since u2

a2
+ v2

b2
= 1 we see that the equation above turns into

(x− u)(x+ u)

a2
+

2vm(x− u)

b2
+
m2(x− u)2

b2
= 0,

and after we factor out x− u, what is left is then

x+ u

a2
+

2vm

b2
+
m2(x− u)

b2
= 0.

Setting x = u gives the equation 2u
a2

+ 2vm
b2

= 0 which solved for m gives exactly m = −ub2

a2v
(v ̸= 0). If v = 0, the statement is easily seen to be true.

Excercise: Show that for a parabola y = mx2 the equation of the tangent line at (a,ma2)
is given by y = ma(2x− a).

The definition of the tangent line in general cannot be using the concept of multiplicity,
for instance in the case of transcendental functions, like in the figure below, where the function
is given by f(x) = sinx

x2−x+1
and the tangent line is at (−1, f(−1)):

-2 -1 1 2

-0.5

0.5

The working definition that we will use a lot and it is fundamental in differential calculus
is the following:

Definition 1.2.10. Given the graph of y = f(x) (with f and elementary function) and (a, f(a))
a point in the interior of its domain, the tangent line at (a, f(a)) has equation y = f(a)+m(x−a)
where the slope m is the limit of the sequence (f(xn)− f(a))/(xn− a) where xn is a sequence in
the domain (except a) convergent to a.
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In what follows we will see why the limit in the above definition exists and it is independent
of the sequence {xn} for all elementary functions, and how do we calculate it using special rules
which we call differentiation rules, hence the first part of calculus sometimes named differential
calculus.

Of course, the concept of limit also appears naturally in the movement of an object through
space as the idea of instantaneous velocity.

1.2.2 Exponential Function

Given a positive real number x, let us consider the sequence

(1.10) fn(x) := (1 +
x

n
)n, n ∈ N.

Using the AM-GM inequality we have[
1 · (1 + x

n
)n)
] 1

n+1
<

1 + n(1 + x
n)

n+ 1
= 1 +

x

n+ 1
=⇒

(1 +
x

n
)n < (1 +

x

n+ 1
)n+1 =⇒ fn(x) < fn+1(x).

Hence, the sequence {fn(x)} is strictly increasing. We will show next that this sequence
is also bounded. Let m be the ceiling of x, or the smallest integer m such that x ≤ m.

If x < 0, what we have above is still valid but we need to makes sure (1 + x
n) > 0. Since

x
n → 0 we can accomplish this by taking n big enough. However, we need this information for
x = −1, so for n ≥ 2 we have fn(−1) < fn+1(−1). This is equivalent to (n−1

n )n < ( n
n+1)

n+1.

Taking reciprocals, we obtain (1 + 1
n−1)

n > (1 + 1
n)

n+1 for all n ≥ 2. This is saying that the

sequence En = (1 + 1
n)

n+1 is strictly decreasing and it is bounded below by zero. Therefore,
it is convergent to a number which we will denote by e (in honor of L. Euler). Since, fn(1) =
En/(1 +

1
n) this is also convergent to e. So, we get for x ≥ 0

fn(x) ≤ fn(m) = (1+
m

n
)n < lim

n→∞
fn(m) = lim

k→∞
fkm(m) = lim

k→∞
(1+

m

km
)km = lim

k→∞
fk(1)

m = em.

For x < 0, fn(x) < fn(0) = 1, which means either way the sequence is bounded. As a result,
the sequence {fn(x)} is convergent and we will set its limits as f(x):

(1.11) f(x) := lim
n→∞

(1 +
x

n
)n, x ∈ R.

Now, we will show some properties which will allow us to conclude that f is the natural
exponential function. The most important property is

(1.12) f(x+ y) = f(x)f(y), x, y ∈ R.
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By properties of limits

f(x)f(y) = lim
n→∞

(1 +
x

n
)n(1 +

y

n
)n = lim

n→∞

[
(1 +

x

n
)(1 +

y

n
)
]n

= lim
n→∞

(
1 +

x+ y

n
+
xy

n2

)n

.

On the other hand, by definition f(x + y) = limn→∞(1 + x+y
n )n so (1.12) follows if we

prove that

lim
n→∞

(
1 + x+y

n + xy
n2

)n
(1 + x+y

n )n
= 1 ⇔

lim
n→∞

(
1 +

xy

(1 + x+y
n )n2

)n

= 1.

We have limn→∞
xy

(1+x+y
n

)
= xy so if we let |xy|+ 1 = C we have

(1− C/n2)n ≤

(
1 +

xy

(1 + x+y
n )n2

)n

≤ (1 + C/n2)n ⇔

fn2(−C)1/n ≤

(
1 +

xy

(1 + x+y
n )n2

)n

≤ fn2(C)1/n < f(C)1/n,

for n big enough, say n ≥ n0. But we know that limn→∞ f(C)1/n = 1, and for the left inequality
fn2(−C)1/n > fn2

0
(−C)1/n if n ≥ n0. Using squeeze theorem the desired limit follows.

1.2.3 Identifying f(x) with ex

We observe that (1.12) implies f(nx) = f(x)n for every x and every nN. If we let x = 1
n we

obtain f(1) = e = f(1/n)n. From here f(1/n) = e1/n. Now, letting x = 1
m , we get

f(n/m) = f(1/m)n = (e1/m)n = en/m.

So, f(r) = er for very rational r. This means f(x) extends the natural exponential function
from rationals to all real numbers.

There are other properties that determine this function uniquely. Let us show that f
is strictly increasing. If x < y then f(y) = f(y − x + x) = f(y − x)f(x) > f(x) provided
f(y − x) > 1. So, we reduced the property to the case t > 0 implies f(t) > 1. Since we can
find a big enough q ∈ N such that 1

q < t we have fn(t) > fn(1/q) = fnq(1)
1/q. Letting n go to

infinity gives f(t) ≥ e1/q > 1.

Exercise 1: Use the same idea as above to prove that limn→∞ f(xn) = 1 for every sequence {xn}
convergent to 0.
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-10 -5 5 10

-10

-5

5

Figure 1.2: Plot of f(x) = ex and f−1(x) = lnx, x = −10..10
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We have f : R → (0,∞), one-to-one and the property above shows that f is also surjective.
Therefore, f is a bijection and we can refer to its inverse. As usual, from now one we will denote
these function by their standard names f(x) = ex and f−1(t) = ln t , t > 0.

Also, the following property is essential for the concept of derivative that follows:

exn − 1

xn
→ 1

for every sequence {xn} convergent to 0. We will leave this for the section dealing with continuity
of the exponential function and the derivative of it. The graphs of ex and lnx (in Mathematica
Exp(x) and Log[x]) on [−10, 10] is included the Figure 1.2.

Excercise 1: Suppose we have a sequence {an} of positive real numbers such that limn→∞
an+1

an
=

ℓ then
lim
n→∞

n
√
an = ℓ

Excercise 2: Use the properties of logarithmic function to show that

lim
n→∞

1 + 1
2 + 1

3 + · · ·+ 1
n

lnn
= 1.

1.2.4 Other limits for e

Let us show that the number e is equal to the limit of xn = 1 + 1
1! + ...+ 1

n! , n ∈ N.

Indeed, using the binomial formula we see that

(1 +
1

n
)n =

n∑
k=0

(
n

k

)
1

nk
= 1 +

n∑
k=1

n!

k!(n− k)!

1

nk
=

1 +
n∑

k=1

1

k!
(1− 1

n
) · · · (1− k − 1

n
) ≤ xn.

Clearly, xn is monotone and bounded from above by

1 + 1 +
1

2
+

1

22
+ · · · = 1 +

1

1− 1/2
= 3.

So, xn must be convergent to a limit say ℓ. Since we showed that en ≤ xn for all n, we must
have e ≤ ℓ. Using again the binomial formula we see that for some fixed m ≤ n:

(1 +
1

n
)n =

n∑
k=0

(
n

k

)
1

nk
≥ 1 +

m∑
k=1

n!

k!(n− k)!

1

nk
=

1 +
m∑
k=1

1

k!
(1− 1

n
) · · · (1− k − 1

n
) → xm as n→ ∞.
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x

Figure 1.3: Plot of f(x) =
(
1 + 1

x

)x
, x = 10000..300000

So, e ≥ xm for every m. Letting m→ ∞ we obtain that e ≥ ℓ. Putting together the information
we obtained so far we have e = ℓ.

1.2.5 e is irrational

We are going to follow the classical proof (see [4] for an account).

1.3 Fundamental Limits of real valued function

Quotation: “The result of the mathematician’s creative work is demonstrative rea-
soning, a proof, but the proof is discovered by plausible reasoning, by GUESSING”
–George Polya, Mathematics and Plausible Reasoning, 1953.)

The concept of limit is essential in the investigation of this mathematical subject called Calculus.
The idea of limit can be intuitively given by some important examples.

Example 1: Let us consider the function

f(x) =

(
1 +

1

x

)x

defined for all x > 0. Its graph is included in Figure 1.3.
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From the graph of f we see that f(x) gets closer and closer to a horizontal line, y = 2.71...,
as x gets bigger and bigger; we formally say in a mathematical language that x goes or tends to
infinity (symbol used for infinity is ∞). We assume this pattern continues as x grows indefinitely.
This number that appears here magically is an important constant in mathematics and it is
denoted by e. Leonhard Euler (1707-1783) was the first mathematician who used this notation.

This number is transcendental, i.e., there is no polynomial equation with integer coeffi-
cients that has e as one of its roots. The truncation to 20 decimals of e is

e ≈ 2.71828182845904523536 . . . .

The fact about the behavior of the function f is recorded mathematically by writing

(1.13) lim
x→∞

(
1 +

1

x

)x

= e.

This is one of the fundamental limits that connects the behavior of polynomial functions
with the exponential functions. In general the exponential functions are functions of the form
g(x) = ax with a ∈ (0, 1) ∪ (1,∞). If a is the number e then the function is called the natural
exponential function. In order to be able to show such a limiting behavior for f(x) =

(
1 + 1

x

)x
,

we would need a rigorous definition for the exponential functions which is not a trivial matter
at all. Think that in particular that will have to include what it means to calculate π

√
7. (By

the way, it seems incredible but we don’t know what the unit digit of 10ππ
ππ

is). We will come
back to all these properties of limits and prove all the properties of the elementary functions as
known, when we will have the concept of definite integral.

In the theory of limits for functions one can first introduce the limit of a particular type of
functions which are called sequences. In general by a sequence of real numbers we just understand
an infinite list a1, a2, . . ., an, . . . where ak are real numbers. As one of the simplest examples is
an = 1

n . As n goes to ∞ then an gets closer and closer to zero. We write this like limn→∞
1
n = 0.

The precise meaning of the limit of a sequence is given in the following definition:

An equivalent way of writing (1.13) is

lim
n→∞

(
1 +

1

an

)an

= e for every sequence an → ∞.

Definition 1.3.1. In general, we say that a function f has limit L at x = a (which can be or
not in the domain of the function) if the sequence f(an) converges to L for every sequence an
convergent to a, which is not eventually a constant sequence (so, it is implicit that the domain
of the function allows for something like this to happen otherwise the concept is vacuous).

The following equivalent statement for the definition of limit of a function at a finite point, it is
usually known as the ϵ − δ definition: f has L as limit at a, if for every ϵ > 0 there

exists δ > 0 such that for every x in the domain of the function such that 0 <
|x− a| < δ, we have |f(x)− L| < ϵ.
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We write this information about the limit in the form

lim
x→a

f(x) = L.

We are going to prove (1.13) later on in the course after the formal definition of exponential
functions by use of definite integrals has been introduced. At this point we are just going to
take (1.13) as fact. To avoid circular reasoning we have to avoid using (1.13) as an important
fact in the process of defining the exponential function and of course all of its properties that
lead to this fundamental limit.

There are other fundamental limits which will be introduced later. At this point we would
like to derive some other elementary limits using properties of limits and these fundamental
limits.

A list of the basic properties of limits of sequences or functions which can be derived
(except the last one since it involves the power function) from the definitions of limit is given
below:

1. lim
x→a

constant = constant

2. lim
x→a

constant f(x) = constant lim
x→a

f(x), lim
n→∞

constant an = constant lim
n→∞

an

3. lim
x→a

f(x)± g(x) = lim
x→a

f(x)± lim
x→a

g(x)

4. lim
x→a

f(x)g(x) = ( lim
x→a

f(x))( lim
x→a

g(x))

5. lim
x→a

f(x)/g(x) = ( lim
x→a

f(x))/( lim
x→a

g(x)) assuming that limx→a g(x) ̸= 0

6. lim
x→a

f(x)r = (lim
x→a

f(x))r if we have limx→a f(x) > 0

All these formulae are correct provided that limx→a f(x) and limx→a g(x) exist. Let us work out
an example in which these properties are used.

Example: Compute lim
x→∞

(
x+ 3

x

)x

.

Since

lim
x→∞

(
x+ 3

x

)x

= lim
x→∞

(
1 +

3

x

)x

= lim
x→∞

[(
1 +

3

x

)x
3

]3

using Property 6, and the substitution x
3 = t (t→ ∞) we get

lim
x→∞

(
x+ 3

x

)x

=

[
lim
t→∞

(
1 +

1

t

)t
]3

= e3.

The Property 6 above can be extended to all the elementary functions. Let us include the
list of the basic elementary functions and their domain here:
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1. Polynomials: p(x) = c0x
n + c1x

n−1 + · · ·+ cn−1x+ cn, Domain = R;

2. Rational: R(x) = P (x)
Q(x) where P and Q have no common linear factors, and the domain is

{x ∈ R|Q(x) ̸= 0};

3. Exponential Functions: h(x) = ax, x ∈ R, a > 0, a ̸= 1; Domain = R;

4. Power Functions: g(x) = xr = er lnx, Domain = (0,∞), r ∈ R; In some cases the

maximum domain is bigger. For example, if r = 1
3 , we define g(x) = x

1
3 simply as the

inverse of g−1(x) = x3 whose domain and range is R. Similarly, the domain of x→
√
x is

[0,∞).

5. Trigonometric Functions: sine, cosine, tangent, cotangent, secant, cosecant;

6. Logarithmic Functions: i(x) = loga(x), Domain = (0,∞);

7. Inverse Trigonometric Functions: arcsin, arccos, arctan

Such functions may have complicated domains but whatever these domains are they will
play an important role in what follows. The Property 6 for limits can be extended (shown to
hold true) to any elementary function as above, say F , in the following way:

(1.14) lim
x→a

F (f(x)) = F ( lim
x→a

f(x)),

whenever limx→a f(x) is in the domain of F and the composition F (f(x)) makes sense. The
reason for which (1.14) happens is in fact a more general (at least formally) property:

(1.15) lim
x→b
x∈D

F (x) = F (b), b ∈ D = Domain(F ),

which is called continuity of F at the point b. In other words we have the following theorem:

Theorem 1.3.2. Every elementary function is continuous at each point in its domain of defi-
nition.

As an application of this theorem let us derive another fundamental limit which is equiva-
lent to (1.13) and it is an intimate connection between polynomials and the natural logarithmic
function:

(1.16) lim
x→0

ln(1 + x)

x
= 1.

Since ln is continuous at the point e we obtain
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lim
x→∞

ln(1 +
1

x
)x = ln e = 1, or lim

x→∞
x ln(1 +

1

x
) = 1,

and if we substitute y = 1
x → 0 we get limy→0

ln(1+y)
y = 1 which is nothing else but (1.16). Of

course, if one assumes that (1.16) is true, the first fundamental limit (1.13), follows.

The third fundamental limit can be derived from (1.16) and it intimately connects the polyno-
mials with the exponentials:

(1.17) lim
x→0

ax − 1

x
= ln a, a > 0, a ̸= 1.

Indeed, if we set y = loga(1 + x) = ln(1+x)
ln a → 0 as x→ 0 (continuity of ln at the point 1)

we obtain x = ay − 1 and so (1.16) becomes

lim
y→0

y

ay − 1
= lim

x→0

ln(1 + x)

x ln a
=

1

ln a
,

which proves that we must have (1.17).

Next, let us derive the fourth fundamental limit which intimately connects the polynomials with
the power functions:

(1.18) lim
x→0

(1 + x)α − 1

x
= α, α ∈ R.

Using the fact that the logarithmic function is the inverse of the exponential function, i.e.
a = eln a, we have

lim
x→0

(1 + x)α − 1

x
= lim

x→0

eln(1+x)α − 1

x
= lim

x→0

eα ln(1+x) − 1

α ln(1 + x)

α ln(1 + x)

x
.

Because t = α ln(1 + x) → 0 as x→ 0 and using (1.16) and (1.17) we obtain

lim
x→0

(1 + x)α − 1

x
= lim

y→0

ey − 1

y
lim
x→0

α ln(1 + x)

x
= α.

Let us work an exercise in which (1.18) plays an important role.

Exercise: Calculate the limit lim
x→1

3
√
x− 1

x− 1
.

Solution: Changing the variable of the limit to y = x− 1 we see that while x → 1 then
y → 0. Hence the limit becomes

lim
x→1

3
√
x− 1

x− 1
= lim

y→0

(1 + y)1/3 − 1

y
=

1

3
.
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The fifth fundamental limit which cannot be derived from the previous ones is one that
intimately connects the polynomials with trigonometric functions:

(1.19) lim
x→0

sinx

x
= 1.

We are going to show this property when the trigonometric functions will be defined
rigorously with the concept of definite integral.

A few simple corollaries of (1.19) are worth mentioning. First, for every a ̸= 0, a simple
substitution gives

(1.20) lim
x→0

sin ax

x
= lim

t→0

sin t

t/a
= a.

Also, using the double angle formula 1 − cos(α) = 2 sin(α/2)2 leads us into another important
trigonometric limit:

(1.21) lim
x→0

1− cos ax

x2
= lim

x→0

2 sin2 ax/2

x2
= 2(a/2)2 =

a2

2
.

Finally, another important tool used in computing limits is the so called Squeeze Theorem.

Theorem 1.3.3. Given three functions f , g and h defined on a domain D which has a as
limiting point (there exist a non-constant sequence in D, which is convergent to a), and

f(x) ≤ g(x) ≤ h(x), for all x ∈ D \ {a}.

If limx→a f(x) = limx→a h(x) = L then limx→a g(x) = L.

This theorem can be easily shown directly from the definition of the limit (1.3.1). One
needs to use the following inequality which is left as an exercise: for all a, b and c such that
a ≤ b ≤ c and for every x ∈ R we have

(1.22) |x− b| ≤ |x− a|+ |x− c|.

Proof Sketch: We let ϵ > 0 be arbitrary and choose δ1 > 0 such that |f(x) − L| < ϵ/2 for
all x ∈ D such that 0 < |x − a| < δ1. Also, because limx→a h(x) = L, we can find δ2 > 0 such
that |h(x) − L| < ϵ/2 for all x ∈ D such that 0 < |x − a| < δ2. Therefore, for x ∈ D such that
0 < |x− a| < δ := min{δ1, δ2}, using 1.22, we have

|g(x)− L| ≤ |f(x)− L|+ |h(x)− L| < ϵ/2 + ϵ/2 = ϵ.

Here is an example of how this theorem can be used to show that limx→∞
sinx
x = 0. We observe

that − 1
x ≤ sinx

x ≤ 1
x for x > 0. Also, since limx→∞

1
x = 0, the claim follows by applying the

theorem to f(x) = − 1
x , g(x) =

sinx
x and h(x) = 1

x .
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Finally some important limits, which deal with the end behavior of elementary are listed next:

(1.23) lim
x→∞

xα

ax
= 0, a > 1, and α ∈ R,

(1.24) lim
x→∞

lnx

xα
= 0, α ∈ (0,∞),

(1.25) lim
x→∞

arctanx =
π

2
, and lim

x→−∞
arctanx = −π

2
.

The last two limits follow from the properties of the function f(x) = tanx and the limits
limx→π

2
− f(x) = ∞ and limx→π

2
+ f(x) = −∞.

Let us prove next (1.23) using the Squeeze Theorem. We need the so called Bernoulli’s
Inequality:

(1.26) (1 + ϵ)n ≥ 1 + nϵ,

for every ϵ > −1 and n ∈ N.

One can prove this by induction on n. It is clear for n = 1 and for the induction step,

(1 + ϵ)n+1 ≥ (1 + nϵ)(1 + ϵ) = 1 + (n+ 1)ϵ+ nϵ2 ≥ 1 + (n+ 1)ϵ.

Then for every a > 1 we can write a = (1 + ϵ)2 for some ϵ > 0. Then

0 ≤ n

an
≤ 1

(1 + ϵ)n
n

1 + nϵ
<

1

(1 + ϵ)n
1

ϵ
→ 0.

This shows that n
an → 0 as n→ ∞. Hence,

0 ≤ x

ax
≤ ⌊x⌋+ 1

a⌊x⌋
→ 0, as x→ ∞,

where ⌊x⌋ is the greatest integer part of x, x > 0. This shows (1.23) for α = 1. Then for α
arbitrary we observe that it is true for α ≤ 0 and for α > 0 we have

lim
x→∞

xα

ax
= lim

x→∞

(
x

(a1/α)x

)α

= 0,

because we still have a1/α > 1. Using a substitution, x = et, one reduces (1.24) to (1.23).
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1.3.1 Problems

In these exercises assume that all the fundamental limits discussed earlier are true, and all the
properties of limits take place including the theorem about elementary functions. Although all
of these limits can be computed easily later, by L’Hospital’s rule, look at these limits as a simple
opportunity to brush up on your algebra skills.

1. Calculate the following limit

lim
x→∞

(
2x+ 3

2x− 1

)3x−1

2. Show that

lim
x→0

1

x
ln

(
1 + 2x

1− 3x

)
= 5.

3. Use the fundamental limits to obtain the equality

lim
x→0

4x − 2x

x
= ln 2.

4. Find the limit

lim
x→1

x5 − 1

x7 − 1
.

5. Use the last fundamental limit to prove that

lim
x→0

tan 6x

tan 3x
= 2.

6. Use any of the fundamental limits and properties of limits to show that

lim
x→0

4x − 2x+1 + 1

x2
= (ln 2)2.

7. Prove that

lim
x→0

3
√
1 + 3x− 3

√
1− 3x

x
= 2.

8. Use a simple substitution to calculate

lim
x→1

x2 − 3x+ 2

x− 1
.
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9. Use any methods to find

lim
x→4

√
x+ 5− 3√
x− 2

.

10. (More challenging one) Assuming that the limit

L = lim
x→0

ex − 1− x

x2
,

exists, prove that L = 1
2 .

11. Determine the following limits numerically and analytically:

(a) lim
x→∞

(
2x+ 3

2x− 3

)x/2

(b) lim
x→0

cos 3x− cos 5x

x2
(c) lim

x→1

5
√
x− 1

7
√
x− 1

12. Determine if the following function is continuous or not. If it is not continuous find the
points of discontinuity.

f(x) =


(x− 2)(x− 3) if x ≥ 0

(sin 2x)(sin 3x)

x2
if x < 0

.

13. Find all values of a such that the following function is continuous:

h(x) =


ax

3 + a2x
if x ≥ 1

4
√
|x| − 1

x− 1
if x < 1

.

14. Use the Intermediate Value Theorem to show that the following equation has a solution in
the specified interval:

ex = 2− 2x in (0, 1).

15. Use Squeeze Theorem to show that following limit is equal to 1:

lim
x→∞

(
x

x+ cosx

) 1
x
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16. Show that for all a, b and c such that a ≤ b ≤ c and for every x ∈ R we have

|x− b| ≤ |x− a|+ |x− c|.

1.3.2 Solutions

1. We substitute 2x+3
2x−1 = 1 + t. We observe that since x → ∞, then 1

2x−1 → 0. Hence

t = 2x+3
2x−1 − 1 = 2x+3−2x+1

2x−1 = 4
2x−1 → 0. Solving for x, we obtain x = 1

2 + 2
t . Then the limit

given can be written in terms of t

lim
x→∞

(
2x+ 3

2x− 1

)3x−1

= lim
t→0

(1 + t)1/2+6/t = lim
t→0

(1 + t)1/2lim
t→0

(
(1 + t)1/t

)6
= 1(e6) = e6.

We used several of the property of the limits listed on page 6, including a variation of the first
fundamental limit (1.13): lim

t→0
(1 + t)1/t = e.

2. We use the property of the logarithmic functions, ln(a/b) = ln a − ln b, (a, b > 0), and
separate the given limit into two limits which have basically the same nature:

L = lim
x→0

1

x
ln

(
1 + 2x

1− 3x

)
= lim

x→0

ln(1 + 2x)

x
− lim

x→0

ln 1− 3x

x
.

So, because for every real number k ̸= 0, we have by 1.16

lim
x→0

ln(1 + kx)

x
= lim

t→0

ln(1 + t)

t/k
= lim

t→0
k
ln(1 + t)

t
= k,

we see that the required limit is L = 2− (−3) = 5.

3. Since we know that lim
x→0

ax−1
x = ln a, we have

lim
x→0

4x − 2x

x
= lim

x→0

2x(2x − 1)

x
=
(
lim
x→0

2x
)
lim
x→0

2x − 1

x
= 20 ln 2 = ln 2.

4. We use the fundamental limit lim
t→0

(1+t)a−1
t = a and with the substitution t = x− 1 → 0, we

get

lim
x→1

x5 − 1

x7 − 1
= lim

t→0

(1 + t)5 − 1

(1 + t)7 − 1
=

lim
t→0

(1+t)5−1
t

lim
t→0

(1+t)7−1
t

=
5

7
.

5. Let us first observe that

lim
x→0

tan ax

x
= lim

x→0

sin ax

x
lim
x→0

1

cos ax
= 1.
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Hence, we have

lim
x→0

tan 6x

tan 3x
=

lim
x→0

tan 6x
x

lim
x→0

tan 3x
x

=
6

3
= 2.

6. Let us observe that 4x − 2x+1 + 1 = 22x − 2(2x) + 1 = (2x − 1)2, and so

lim
x→0

(
2x − 1

x

)2

= (ln 2)2.

7. We observe that for a ̸= 0, we have

lim
t→0

(1 + at)α − 1

t
= lim

x→0

(1 + x)α − 1

x/a
= aα.

So, the required limit L can be calculated as shown below

L = lim
x→0

3
√
1 + 3x− 1

x
− lim

x→0

3
√
1− 3x− 1

x
= 3(1/3)− (−3)(1/3) = 2.

8. We substitute x− 1 = t, and observe that

lim
x→1

x2 − 3x+ 2

x− 1
= lim

t→0

(1 + t)2 − 3(1 + t) + 2

t
= lim

t→0
t− 1 = −1.

9. Let’s multiply by the conjugate top and bottom and get rid of the differences of square roots
by using the formula (

√
a− b)(

√
a+ b) = a− b2:

lim
x→4

√
x+ 5− 3√
x− 2

= lim
x→4

(x− 4)(
√
x+ 2)

(x− 4)(
√
x+ 5 + 3)

= lim
x→4

√
x+ 2√

x+ 5 + 3
= 4/6 = 2/3.

10. Assuming that the limit, let us first observe that if we change the variable x→ 2x, we have

L = lim
x→0

e2x − 1− (2x)

4x2
,

and so

4L = lim
x→0

e2x − 1− (2x)

x2
.

On the other hand, using a fundamental limit, we have

1 = lim
x→0

(ex − 1)2

x2
= lim

x→0

e2x − 2ex + 1

x2
.
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Subtracting the two equalities we get

4L− 1 = lim
x→0

2ex − 2x− 2

x2
= 2L.

From here we solve for L: 2L = 1 or L = 1/2.

11. We will demonstrate similar problems:

(a) lim
x→0

(
3x+ 1

1 + 2x

)1/x

(b) lim
x→0

cos 5x− cos 7x

x2
(c) lim

x→1

3
√
x− 1

7
√
x− 1

(a) Let f(x) =
(
3x+1
1+2x

) 1
x
for x ∈ (−1/2, 1/2). Some of the values of f at inputs that are

getting closer to zero are tabulated next:
f(0.1) 2.226491601
f(-0.1) 3.801189052
f(0.01) 2.652804911
f(-0.01) 2.788907699
f(0.001) 2.711511762
f(-0.001) 2.725103316

It seems to be the case that the limit is ≈ 2.71. To do this algebraically we use the first
fundamental limit:

lim
x→0

(
3x+ 1

1 + 2x

)1/x

= lim
x→0

(
1 +

x

1 + 2x

)1/x

= lim
x→0

[(
1 +

1

(1 + 2x)/x

) 1+2x
x

] x
1+2x

1
x

= e
lim
x→0

1

1 + 2x = e

so

lim
x→∞

(
3x+ 1

1 + 2x

)2x

= e .

(b) If g(x) =
cos 5x− cos 7x

x2
if x ̸= 0. Some of the values of g for inputs getting closer and

closer to zero are included in the next table:
g(0.1) 11.27403746
g(0.01) 11.99260100
g(0.001) 11.99990000

We can guess that this limit must be equal to 36. This is indeed the case since

lim
x→0

cos 3x− cos 9x

x2
= lim

x→0

2 sinx sin 6x

x2
= lim

x→0
2
sinx

x
lim
x→0

6
sin 6x

6x
= 12.
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Hence lim
x→0

cos 5x− cos 7x

x2
= 12 .

(c) Finally if h(x) =
3
√
x− 1

7
√
x− 1

for every real number x ̸= 1. Some of the values of g around zero

are shown below:
h(0.9) 2.310133871
h(1.1) 2.354690647
h(0.99) 2.331101813
h(1.01) 2.335546124

So it is reasonable to conclude that the limit of this function at x = 1 is 2.3 = 7
3 . This is true

since if we make the change of variable x = (1 + t)7 we see that t→ 0 and

lim
x→1

3
√
x− 1

7
√
x− 1

= lim
t→0

(1 + t)
7
3 − 1

t
=

7

3
.

Therefore, lim
x→1

3
√
x− 1

7
√
x− 1

=
7

3
.

12. We observe that there are not problems with the continuity at points a other than a = 0.
Clearly limx→0+ f(x) = 6 = f(0) and

lim
x→0−

f(x) = lim
x→0−

(sin 2x)(sin 3x)

x2
= lim

x→0−

sin 2x

x
lim

x→0−

sin 3x

x
= 2(3) = 6.

13. We observe that h is continuous everywhere except possibly at x = 1. Next, we see that
limx→1+ h(x) = h(1) = a/(3 + a2). Also, we get

lim
x→1−

h(x) = lim
t→0

(1 + t)1/4 − 1

t
= 1/4.

In order for h to be continuous, we need a/(3 + a2) = 1/4 or a2 − 4a + 3 = 0. This quadratic
has two solutions: a = 1 and a = 3. Therefore, h is continuous if and only if a ∈ {1, 3}.

14. We consider f(x) = ex − 2 + 2x defined on [0, 1]. This is a continuous function, being
elementary. We notice that f(0) = e0− 2 = 1− 2 = −1 < 0 and f(1) = e− 2+2 = e > 0. Thus,
we can apply IVT to f on [0, 1] and y = 0. We conclude that there exists x0 ∈ (0, 1) such that
f(x0) = 0. This is equivalent to ex0 = 2− 2x0.

15. Since −1 ≤ cosx ≤ 1 we see that, for x > 1, we have

(
x

x− 1

) 1
x

≤
(

x

x+ cosx

) 1
x

≤
(

x

x+ 1

) 1
x

But limx→∞

(
x

x−1

)
= limx→∞

(
1

1−1/x

)
= 1 and similarly limx→∞

(
x

x+1

)
= limx→∞

(
1

1+1/x

)
=

1. Hence
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lim
x→∞

(
x

x− 1

) 1
x

= 10 = 1 and lim
x→∞

(
x

x+ 1

) 1
x

= 10 = 1.

This forces

lim
x→∞

(
x

x+ cosx

) 1
x

= 1.

16. There are four possibilities: x ∈ (−∞, a], x ∈ (a, b], x ∈ (b, c] and x ∈ (c,∞).

Case I So, for x ∈ (−∞, a] the inequality becomes equivalent to b − x ≤ a − x + c − x or
x ≤ a+ c− b. This is true since x ≤ a and c− b ≥ 0.

Case II, x ∈ (a, b] The inequality is the same as b − x + x − a + c − x. This is the same as
b ≤ (x− a) + c which is true because b ≤ c and x− a ≥ 0. Similarly, one can analyze the other
two cases.

Fundamental Limits

(1.27) lim
x→0

(1 + x)
1
x = e

(1.28) lim
x→0

ln(1 + x)

x
= 1

(1.29) lim
x→0

ax − 1

x
= ln a, a ̸= 0

(1.30) lim
x→0

(1 + x)α − 1

x
= α, x ∈ R

(1.31) lim
x→0

sin(x)

x
= 1

(1.32) lim
x→0

1− cos(αx)

x2
=
α2

2

1.4 Continuity and piecewise functions

Calculating limits from the fundamental limits may turn out to be a real challenge We have seen
in Theorem 1.3.2 that every elementary functions is continuous on its domain of definition.
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A new class of functions which appears often in applications we will refer to it here as
piecewise functions. This set of functions is important also within mathematics as a theoretical
tool since it provides a good pool for examples and counterexamples.

Let us consider such an example:

f(x) =



sin 2x
x if x > 0,

2 if x = 0,

1−ln(1−2x)
x if x < 0

.

This function is continuous at every point different of zero since the rules for each branch
are elementary functions well defined on those intervals. At x = 0 we have

lim
x→0+

1− ln(1− 2x)

x
= 2 lim

x→0

ln(1− 2x)− 1

−2x
= 2

and

lim
x→0−

sin 2x

x
= 2 lim

x→0

sin 2x

2x
= 2.

Hence we conclude that limx→0 f(x) = 2 = f(0) and so this function is continuous.

On the other hand if we simply change the definition of f to

∧
f(x) =



sin 2x
x if x > 0,

3 if x = 0,

1−ln(1−2x)
x if x < 0

.

In this case clearly
∧
f is not continuous, we say it is discontinuous, and since the limit

exists at this point we call such a point a removable discontinuity.

A more interesting example is the following function which does not have a limit at zero:

g(x) =



sin( 1x) if x > 0,

2 if x = 0,

x sin( 1x) if x < 0

,

although the left hand side limit exists since |x sin( 1x)| ≤ |x| → 0. This forces limx→0− g(x) = 0.
This principle is known as the squeeze theorem. So, g is discontinuous at x = 0 and such a
discontinuity is called an essential discontinuity.
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An important theorem that is used often in mathematics is the Intermediate Value The-
orem:

Theorem 1.4.1. (IVT) Consider a continuous function on a closed interval [a, b] and a number
c between f(a) and f(b). Then there exists a value x ∈ (a, b) such that f(x) = c.

The proof of this theorem is beyond the scope of the course so we invite the interested
students read a proof of it from a real analysis textbook.

As an application let us work the following problem:

If a and b are positive numbers, prove that the equation

(1.33)
a

x3 + 2x2 − 1
+

b

x3 + x− 2
= 0

has at least one solution in the interval (−1, 1).

The equation is equivalent to a(x3 + x − 2) + b(x3 + 2x2 − 1) = 0. So, if we denote
by p(x) = a(x3 + x − 2) + b(x3 + 2x2 − 1) we notice that, p is continuous on [−1, 1] and
p(−1) = −4a < 0 and p(1) = 2b > 0. Hence 0 is in between the two values of p at the endpoints
of the interval [−1, 1] and so, by the Intermediate Value Theorem, there must be a c ∈ (−1, 1)
such that p(c) = 0. This means c is a solution of the original equation.

A related problem and a more precise statement about the possible zeroes of (1.33) will
be two show that the equation (1.33) has at least one solution in the interval (α, 1) where

α =
√
5−1
2 ≈ 0.6180 (reciprocal of the so called golden ratio number).

Indeed, the polynomial above can be written in the form p(x) = a(x − 1)(x2 + x + 2) +
b(x+ 1)(x2 + x− 1) and α is a root of the polynomial x2 + x− 1. Hence p(α) = a(α− 1)3 < 0
and p(1) = 2b > 0. Therefore the same argument applies for the interval (α, 1).

1.4.1 Problems

1. Use the IVT to prove that every continuous function f : [a, b] → [a, b] has a fixed point, i.e.
a point c ∈ [a, b] such that f(c) = c.

2. Consider the function f defined in the following way:

f(x) =


xe

− 1
| sin x| , if x ̸= kπ, k ∈ Z,

0 if x = kπ, k ∈ Z.

Show that f is continuous on R.

3. Prove that every continuous function on [a, b] which is one-to-one, must be strictly monotone.

(A one-to-one function is a function with the property that f(u) = f(v) can happen only
if u = v and a strictly monotone function is either strictly increasing or strictly decreasing. A
strictly increasing function is a function with the property that for every u and v in its domain
such that u < v, then f(u) < f(v).)
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Figure 1.4: Graph of f in Problem 2.

1.4.2 Solutions to 1.4.1 Problems

1. We consider the function g(x) = f(x)− x and observe that g is continuous on [a, b], g(a) =
f(a)−a ≥ 0 and g(b) = f(b)− b ≤ 0. If either g(a) = 0 or g(b) = 0, then we found a fixed point:
a or b. If g(a) > 0 and g(b) < 0 then we can use IVT for c = 0 and obtain a point x0 ∈ (a, b)
such that g(x0) = 0. Hence, x0 is a fixed point for f .

2. First let us observe show that we don’t have a problem with the continuity except for points
of the form a = kπ. In order to prove the continuity at a we need to show that limx→a f(x) = 0.
Since | sinx| → 0 when x→ a, we conclude that limx→a f(x) = a limt→∞ 1/et = 0.

1.4.3 Sample Test 1 and Solutions

1. Determine the following limits numerically and analytically:

(a) lim
x→0

1 + cosx− 2 cos 2x

x2
(b) lim

x→1

3
√
x− 1

x7 − 1

Solutions: (a) If g(x) =
1 + cosx− 2 cos 2x

x2
if x ̸= 0. Some of the values of g for inputs getting

closer and closer to zero are included in the next table:

g(0.1) 3.4871
g(0.01) 3.4998
g(0.001) 3.4999
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We can guess that this limit must be equal to 7/2. We split the limit in two:

lim
x→0

1 + cosx− 2 cos 2x

x2
= lim

x→0

2− 2 cos 2x

x2
− lim

x→0

1− cos(x)

x2
=

2 lim
x→0

1− cos 2x

x2
− lim

x→0

1− cos(x)

x2
= 2(4/2)− 1/2 = 7/2 = 7/2 ,

(b) Finally if g(x) =
3
√
x− 1

x7 − 1
for every real number x ̸= 1. Some of the values of g around 1 are

shown below:
g(0.9) 0.066
h(1.1) 0.034
h(0.99) 0.049
h(1.01) 0.046

If we make the change of variables x = (1 + t)(1/7), we see that t→ 0 and

lim
x→1

3
√
x− 1

x7 − 1
= lim

t→0

(1 + t)
1
21 − 1

t
=

1

21
≈ 0.047619.

Therefore, lim
x→1

3
√
x− 1

x7 − 1
=

1

21
.

2. Determine if the following function is continuous or not. If it is not continuous find the
points of discontinuity.

f(x) =


x
π if x ≥ π/2

cosx

π/2− x
if x < π/2

.

Solution: The function is defined everywhere and it is continuous at every point other than
π/2 since it is elementary defined there. For x = π/2 we observe that

f(π/2) = 1/2, lim
x↘π/2

f(x) = 1/2, lim
x↗π/2

f(x) = lim
x↗π/2

cosx

π/2− x
= lim

t→0

cos(π/2− t)

t
.

Since cos(π/2− t) = cos(π/2) cos t+ sin(π/2) sin t = sin t we see that

lim
x↗π/2

f(x) = lim
t→0

sin t

t
= 1.

So, the function is not continuous at x = π/2.

The graph of f is shown next:
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.

We can see that there is only one point of discontinuity, namely, at x = π/2.

3. Use the Intermediate Value Theorem to show that the following equation has a solution in
the specified interval:

2 cosx = 1 + sinx in (0,
π

2
).

Solution: We consider the function g(x) = 2 cosx− 1− sinx which is defined for all x ∈ [0, π2 ].
This function is continuous since it is in terms of elementary trigonometric functions whose
domain of definition is the whole real line. Because g(0) = 1 > 0 and g(π2 ) = −2 > 0, we can
apply IVT to g on [0, π2 ] and for y = 0, to conclude that there exists a c ∈ (0, π2 ) such that
g(c) = 0. This implies that the equation

2 cosx = 1 + sinx

has a solution in (0, π2 ). It turns out that this solution is arctan(3/4) ≈ 0.644.

The graph of the two functions, x → 2 cosx and x → 1 + sinx, on the interval [0, π2 ] is
shown below:
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Clearly the point of their intersection, which is unique, is the value given by the IVT. 4.

Calculate the derivatives of the following functions:

(a) g(x) = x2 − 3x3 + x
√
x+ 1, x ∈ [0,∞)

(b) h(x) = x3 lnx− x2ex, x ∈ R

(c) l(x) = 23 − 32x , x ∈ R

(d) m(x) = (lnx)3, x > 0

(e) n(x) = (2x+ 1)3, x ∈ R.

Solution: (a) First we write g(x) = x2 − 3x3 + x3/2 + 1 and so using the power rule, we obtain

g′(x) = 2x− 9x2 +
3

2

√
x for all x ∈ [0,∞).

(b) The product rule gives h′(x) = 3x2 ln(x) + x2 − 2xex − x2ex for all x > 0.

(c) Using the derivative of bx, we have l′(x) = 0 − (32x)′ = −(9x)′ = −9x ln 9 = −2(32x) ln 3 ,

x ∈ R.

(d) We know that (fg)′ = f ′g + fg′, and then (f2)′ = f ′f + ff ′ = 2ff ′. Therefore, (f3)′ =
(f2f)′ = 2ff ′f + f2f ′ = 2f2f ′ + f2f ′ = 3f2f ′ which gives us the formula (f3)′ = 3f2f ′. In
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particular, m′(x) = 3(lnx)2(1/x) =
3(lnx)2

x
for all x > 0.

(e) Similarly, n′(x) = 3(2x+ 1)2(2x+ 1)′ = 6(2x+ 1)2 , x ∈ R.

One could just rewrite n(x) = 8x3 + 12x2 + 6x + 1 and differentiate term by term using

the power rule: n′(x) = 24x2 + 24x+ 6 , which is the same answer as before but in the foiled

form:

6(2x+ 1)2 = 6(4x2 + 4x+ 1) = 24x2 + 24x+ 6.
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Chapter 2

Derivatives and the rules of
differentiation

2.1 Derivatives of the basic elementary functions

Quotation: A great discovery solves a great problem but there is a grain of discovery
in the solution of any problem. Your problem may be modest; but if it challenges your
curiosity and brings into play inventive faculties, and if you solve it by your own
means, you may experience the tension and enjoy the triumph of discovery. –George
Polya

The concept of differentiation is nevertheless the most important in calculus. We are going
to start with the geometric question that leads to this notion. Consider one of the important
curves that one plays with in geometry: the circle. Taking a point on this circle one can
draw several lines passing through this point but only one will intersect the circle at only that
particular point. We usually call this line the tangent line to the circle at the given point. We
know that such a line can be obtained by just taking the perpendicular to the corresponding
radius of the point where the tangent is to be drawn.

What if we have some other types of curves? First, how do we even define the concept of
tangent line and how do we compute it’s equation?

Let us start with the curve of equation y = f(x) and suppose we take P = (a, f(a)) a
point on this curve. For another point close to P , say Q = (x, f(x)) we can calculate the slope
of the secant line PQ:

f(x)− f(a)

x− a
.

Intuitively, when x → a, this slope tends to have the limiting value of the slope of the
“tangent” line to the curve at this point. This is actually what we will take by definition to be
the tangent line at (a, f(a)) to y = f(x):

41
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y − f(a) = f ′(a)(x− a)

where f ′(a) = limx→a
f(x)−f(a)

x−a if this last limit exists. We call this limit the derivative of f at

a. Other notations used for this limit are: df
dx(a) or

df
dx |x=a. We may also look at this calculation

as a function if we define f ′ (the derivative of f) as being

(2.1) f ′(x) = lim
t→x

f(t)− f(x)

t− x

for all x ∈ Domain(f ′) := {x| all real x where the limit (2.1) exists}.

We can say that calculus is the study of the operation f → f ′ as applied mainly to
elementary functions. There are quite a few surprises and interesting stories about this “simple”
transformation.

One of the beginning stories is that each of the fundamental limits, that we have identified
in Chapter I, represents the derivative of one of the basic elementary functions at a certain point.
Not only that but each such limit is basically reflected into the derivative at other point in one
way or another. Let us be more specific.

We start with the derivative of a power function:

α = lim
t→0

(1 + t)α − 1

t
= lim

x→1

xα − 1

x− 1
= f ′(1)

where f(x) = xα, x > 0.

Let us calculate the derivative at any other point a > 0:

f ′(a) = lim
x→a

xα − aα

x− a
= lim

x→a

aα((xa )
α − 1)

a(xa − 1)
= aα−1 lim

t→1

tα − 1

t− 1
= αaα−1.

Hence, we have the derivative of a power function, also known as the power rule:

d

dx
(xα) = αxα−1, x > 0.

Next, let us find out the derivative of the exponential function.

Consider g(x) = ex and a ∈ R arbitrary. Then

g′(a) = lim
t→a

g(t)− g(a)

t− a
= lim

t→a

et − ea

t− a
= lim

t→a

ea(et−a − 1)

t− a

and after the substitution t− a = x, since x→ 0 we obtain, using the second fundamental limit
(1.17):
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g′(a) = ea lim
x→0

ex − 1

x
= ea.

Therefore we have
d

dx
ex = ex, x ∈ R.

But what if we have a simple change in the base of the exponential function? Say, g(x) = bx

with b > 0 and b ̸= 1.

Then, using again (1.17), we get

g′(a) = lim
t→a

g(t)− g(a)

t− a
= lim

t→a

bt − ba

t− a
= lim

t→a

ba(bt−a − 1)

t− a
=

ba lim
x→0

bx − 1

x
= ba lim

x→0

ex ln b − 1

x ln b
ln b = ba ln b.

Hence,
d

dx
bx = bx ln b, x ∈ R.

We will find next the derivative of the most common trigonometric function: h(x) = sinx
defined for all radian angles x ∈ R.

For fixed a ∈ R we have

h′(a) = lim
t→a

sin t− sin a

t− a
= lim

t→a

2 sin t−a
2 cos t+a

2

t− a

using the formula from trigonometry sinα − sinβ = 2 sin α−β
2 cos α+β

2 . Then we change the
variable t−a

2 = x and notice that x→ 0 as t→ a. That gives

h′(a) = lim
x→0

sinx

x
cos(x+ a) = cos a,

and so
d

dx
sinx = cosx, x ∈ R.

For the cosine we can do a similar calculation. Let i(x) = cosx with x ∈ R. The formula
from trigonometry we need is cosα− cosβ = −2 sin α−β

2 sin α+β
2 . We have, for fixed a ∈ R,

i′(a) = lim
t→a

cos t− cos a

t− a
= lim

t→a

−2 sin t−a
2 sin t+a

2

t− a
.

After changing the variable as before we see that

i′(a) = − lim
x→0

sinx

x
sin(x+ a) = − sin a.
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2.2 Derivatives under algebraic operations

The basic algebraic operations that we do with numbers as addition, multiplication, subtraction
and division can be done with functions. The derivative behaves nicely under these operations.
One can observe that straight from the properties of the limit we get

(αf + βg)′ = αf ′ + βg′

at every point where f ′ and g′ exist. One rule that is a little unexpected is the so called, the
product rule:

(fg)′ = f ′g + fg′

again, as long as f ′ and g′ exist. Let us see where this is coming from. Suppose we have a point
a at which f ′(a) and g′(a) exist. Then

(fg)′(a) = lim
t→a

f(t)g(t)− f(a)g(a)

t− a
= lim

t→a

f(t)g(t)− f(t)g(a) + f(t)g(a)− f(a)g(a)

t− a
=

lim
t→a

f(t)
g(t)− g(a)

t− a
+ lim

t→a
g(a)

f(t)− f(a)

t− a
.

One can observe that since f ′(a) exists then limt→a f(t) = f(a). So, the limit

(fg)′(a) = lim
t→a

f(t)g(t)− f(a)g(a)

t− a
= f(a)g′(a) + f ′(a)g(a)

which proves the product rule.

We apply the product rule now to find the derivative of functions that are products in
different basic elementary functions. As an example let us compute d

dx [(x
2 − x)ex]:

d

dx
[(x2 − x)ex] = (2x− 1)ex + (x2 − x)ex = (x2 + x− 1)ex.

The quotient rule can be stated like this:

(
f

g
)′ =

f ′g − fg′

g2
,

of course, whenever the derivatives involved exist. The proof of this is similar to the one we did
for the product rule so we let that to the reader as an exercise. This rule allows us to compute
now the derivative of the rest of the trigonometric functions:

d

dx
(tan)(x) =

sin′ x cosx− sinx cos′ x

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.
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Similarly, we get d
dx(cot)(x) = − csc2 x, whenever the sinx ̸= 0. Finally we can show that

sec′ x = secx tanx and csc′ x = − cscx cotx.

Can any function be a derivative? Derivatives have the special property that we talked
about at the end of the previous section on continuity.

Theorem 2.2.1. The derivative f ′ of a differentiable function f on [a, b] has the, so called,
Darboux property, or the intermediate value property, i.e. for y in between f ′(x1) and f ′(x2)
(a ≤ x1 < x2 ≤ b), there exists c ∈ [x1, x2] such that f ′(c) = y.

We will include a proof of this in the next section. Let us make the observation that a
function which has jump discontinuities such as

signum(x) =



1 if x > 0

0 if x = 0

−1 if x < 0

cannot be the derivative of any function.

Finally, we have one more but the most trickier rule which deals with the composition of two
functions: the chain rue. Suppose that f : D(f) → A ⊂ D(g)

g→ R, are two differentiable
functions on their domain. Then (g ◦ f)′ = (g′ ◦ f)f ′ or written a certain x in the domain of f :

(g ◦ f)′(x) = (g′ ◦ f)(x)f ′(x).

One example, let us say, g(x) = x10 and f(x) = x2 +2x+1. We observe that (g ◦ f)(x) =
(x2 + 2x+ 1)10 so d

dx(x
2 + 2x+ 1)10 = 10((x2 + 2x+ 1)9(2x+ 2) = 20(x2 + 2x+ 1)9(x+ 1). Let

us observe that (g ◦ f)(x) = (x+1)20 so we can apply the chain rule into different functions and
get (g ◦ f)′(x) = 20(x+ 1)19(x+ 1)′ = 20(x+ 1)19, which is the same answer as we have gotten
before.

One important application of the chain rule is the formula for computing the derivative of
the inverse of a function. Let us assume that f : I → J and g : J → I is the inverse of f , which
is assumed to be differentiable with the derivative not zero at every point in the interval I. It
is possible to show that g is differentiable and so g(f(x)) = x implies g′(f(x))f ′(x) = 1. Hence,

g′(y) =
1

f ′(g(y))
, y ∈ J .

As an example, if we take f(x) = sinx, x ∈ (−π
2 ,

π
2 ) with the inverse g(x) = arcsinx, x ∈ (−1, 1).

The formula above gives:

g′(x) =
d

dx
(arcsin)(x) =

1

cos(arcsinx)
=

1√
1− sin2(arcsinx)

=
1√

1− x2
,

so we have the formula
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d

dx
(arcsin)(x) =

1√
1− x2

, x ∈ (−1, 1).

One can similarly find the following two similar formulae:

d

dx
(arccos)(x) = − 1√

1− x2
, x ∈ (−1, 1), and

d

dx
(arctan)(x) =

1

1 + x2
, x ∈ R.

Finally, let us show another important formula that can be derived from the chain rule,
which is helpful when we differentiate functions of the form u(x)v(x). So, let us assume that u
and v are two differentiable functions defined on I and u(x) > 0 for all x ∈ I (some interval).
Then

(2.2)
d

dx
(uv) = vuv−1u′ + uv ln(u)v′ .

We can derive this by the so called logarithmic differentiation method: we set w = uv and
apply ln both sides to get lnw = v lnu. Differentiating we obtain w′

w = v′ lnu+ v u′

u . Solving for
w′ we obtain formula (2.3).

Let us see how this formula works for f(x) = xx defined for x ∈ (0,∞). We see that
f ′(x) = x(xx−1)+xx lnx or f ′(x) = xx(1+ lnx). We will see later that this implies to following
interesting inequality

(2.3) xx ≥ e−
1
e ≈ 0.6922006276, x > 0.

2.2.1 Problems

1. Find the derivative of the following functions at every (interior) point in their natural domain
using the definition of the derivative:

(a)f(x) =
1

x
(b) g(x) =

√
x

2. Calculate the derivatives of the following functions with the appropriate rules:

(a) f(x) = 2+x2

x5 , x ̸= 0,

(b) g(x) = ex sinx, x ∈ R
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(c) h(x) = x2 tanx, x ∈ (0, π2 )

(d) k(x) = 2x−1
x2+1

, x ∈ R

(e) l(x) = (3x2 − 2x) ln(x), x > 0

(f) m(x) = 3 secx− 2 cotx, x ∈ (0, π2 )

(g) n(x) = (sinhx)(coshx), x ∈ R.

(h) o(x) = ex
2+2x, x ∈ R.

(i) p(x) = ln(x2 + 3), x ∈ R.

(j) q(x) = sin(x+ cosx), x ∈ R.

(k) r(x) = arcsin(2x− 1), x ∈ (0, 1).

(l) s(x) = arccos( 2x
1+x2 ), x ∈ (− 1, 1).

(m) t(x) = arctan(tanhx), x ∈ R.

3. Determine if the following function is differentiable or not. If it is, calculate its derivative.

f(x) =


x2 if x ≥ 0

−x2 if x < 0

.

Is this function twice differentiable?

4. Find all values of a such that the following function is differentiable:

h(x) =


(x+ a)2 if x ≥ 1

2a+ a2 + x if x < 1

.



48 CHAPTER 2. DERIVATIVES AND THE RULES OF DIFFERENTIATION

5. If f(x) =
x2 − 3x+ 2

x2 + 1
, x ∈ R then find the equation of a line which is tangent to the graph

of y = f(x) at the point (0, 2). Draw the graphs of both the function and its tangent line.

6. Let g(x) = u(x)v(x), with x in some interval domain which is a common domain for the
two “highly” differentiable functions u and v. Calculate g′′(x) in terms of the derivatives of u
and v. What about g′′′(x), can you guess what is that going to be with calculating it?

7. Let n be a non-negative integer. Prove that if P is a polynomial of degree n, and a ̸= 0, then

d

dx

[
(
P (x)

a
− P ′(x)

a2
+ ...+ (−1)n

P (n)(x)

an+1
)eax

]
= P (x)eax, x ∈ R.

8. Prove the quotient rule.

9. Prove the rule for the triple product (fgh)′ = f ′gh+ fg′h+ fgh′ and a similar one for the
quotient:

(
1

fgh
)′ = − 1

fgh
(
f ′

f
+
g′

g
+
h′

h
).

10. Prove the formula of differentiating the product of two functions: for n ∈ N

(fg)(n) =
n∑

k=0

(
n

k

)
fkgn−k.

11. Find the derivative of the function g(x) = (sin2 x)x.

2.3 Implicit Differentiation

We are going to do four examples here. Let us start with a curve that looks implicit but it
cab be treated as explicit, as we will see later: x2 + y2 = 1, the unit circle. Clearly the point
P := (3/5, 4/5) is a point on this circle. We are going to find the equation of the tangent line
of this circle at the point P . For this purpose we employ a procedure which is going to be used
in the examples of this type. The equation which we have for the circle, we think of it as a
functional equation, i.e. x2 + y(x)2 = 1 and differentiate, we say implicitly, but it is really the
chain rule that is used: 2x + 2yy′ = 0. At this time we substitute the coordinates of the point
P : 2(35) + 2(45)y

′ = 0. The equation we get must be a solvable linear equation in y′. So, solving
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Figure 2.1: Unit circle and a tangent line

for y′ gives y′ = −3
4 . Hence, the equation of the tangent line is y − 4

5 = −3
4(x− 3

5) or

y =
4

5
+

9

20
− 3x

4
⇔ y =

5

4
− 3x

4
.

The graph of the unit circle and the tangent line at P is included in Figure 2.1. The reason we
said this is not really an implicit situation is because we can solve for y (y > 0) in terms of x
and obtain an explicit expression y =

√
1− x2. Then y′(x) = − 2x

2
√
1−x2

. So, y′ = −3
4 as before.

If we want to take an example that would be really difficult to do it in explicit form (but
possible, since in general algebraic equations cannot be solved in explicit form, i.e in terms of the
elementary functions we have, if their degree is more or equal to 5), we may take the following
curve: x3 + y3 = 9y + x− 2 and the point of tangency is P := (2, 1). Differentiating implicitly
gives 3x2 + 3y2y′ = 9y′ + 1. Next, we substitute with the coordinates of P : 12 + 3y′ = 9y′ + 1
which gives y′ = 11

6 . Hence the equation of the tangent line if

y − 1 =
11

6
(x− 2) ⇔ y =

11x− 16

6
.

The graph of this cubic and the tangent line at P is included in Figure 2.2.

Let us take a look at a situation in which both x and y are related by an implicit equation
and the third variable, the time t, is the independent variable. It is known that the planets
revolve around the Sun in elliptical orbits and they move according to Kepler’s law: the radius
connecting the planet to the Sun wipes out an area that varies proportionally with time. Let us
suppose that the equation of the trajectory of a planet is given in polar form by the equation
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Figure 2.2: Cubic curve

r =
a(1− e2)

1 + e cos θ
, 0 ≤ e < 1,

where e is usually called eccentricity (and is pretty small for the planets closer to the Sun), a is
the semi-major axis.

It is easy to see that the formula of the area of a triangle ABC is given by A = bc sinA
2 and

so if we assume that the triangle has the vertex A at the origin (the Sun) and vertices B and C
on the trajectory at time t and t+ ϵ, with ϵ > 0 very small, we see that

d

dt
A(t) =

r2

2

dθ

dt
.

Let us suppose that it takes T days (Earth days) to complete a full revolution. Then θ(T ) = 2π
and A(t) = area(Ellipse) t

T so

dθ

dt
=
area(Ellipse)

T

2

r2

.

The area of the ellipse, is in this case, equal to πa2
√
1− e2. We will learn in Calculus II

and Calculus III that the equation of the arc-length is given by L =
∫ θ2
θ1

√
r2 + dr

dθ

2
dθ. So, the

linear speed of the a planet is given by

v =
dL

dt
=

√
r2 +

dr

dθ

2dθ

dt
=

√
r2 +

dr

dθ

2 2πa2
√
1− e2

Tr2
.
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Figure 2.3: Another Cubic curve

Let us compute the speed at t = 0, in other words, when the planet is at the closest
distance to the Sun. Differentiating with respect to θ, we get

dr

dθ
=
a(1− e2)e sin θ

(1 + e cos θ)2
⇒ dr

dθ
|θ=0 = 0.

Therefore,

v(0) =
2πa2

√
1− e2

Ta(1− e)
=

2πa

T

√
1 + e

1− e
.

We can think of the quantity 2πa
T as the average speed and call it vav. We get the following

formulae for the speed of a planet at the Aphelion and Perihelion

vap = vav

√
1− e

1 + e
, vperi = vav

√
1 + e

1− e
.

A nice applet that let you check the movement for an arbitrary planet around the Sun can be
found at

http : //galileo.phys.virginia.edu/classes/109N/more stuff/flashlets/kepler6.htm

Finally let us take a look at a problem which provides a great deal of ideas in mathematics.
We consider the curve x3 + y3 = xy + 7. A point on this curve of integer coordinates is
P (1, 2). The usual technique to determine the equation the tangent line to this curve at P
gives: 3x2 + 3y2y′ = y + xy′ or 3 + 12y′ = 2 + y′. Solving for y′ we get y′ = − 1

11 . Hence the
tangent line has equation y = 2 − (x − 1)/11 = 23−x

11 . We include a picture of this curve and
the tangent line at P in Figure 2.3. Let us observe that the tangent line intersects the curve
at another point. What is interesting is that this point has rational coordinates too. In other
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Figure 2.4: Problem 1

words the equation x3 + (23 − x)3/113 = x(23 − x)/11 + 7 has a double zero at x = 1 and the
third zero at x = −15

7 . This gives the point of intersection of the tangent line with the curve
at Q(−15

7 ,
16
7 ). Now we can repeat the procedure with the tangent line at Q. We see that this

shows that the equation x3 + y3 = xy + 7 has possibly infinitely many points on it of rational
coordinates (unless we get back to P or other such point already constructed). It turns out that
one can define some algebraic structure (similar to the addition of numbers) on such points and
the part of mathematics which studies these structures is usually referred to as Elliptic Curves.
These days there are applications of this theory in Cryptography (see [1]).

2.3.1 Problems

1. Find the equation of the tangent line at the point P := (2, 1) to the curve (x− 2y)3 − (2x−
y)2 − x+ y + 10 = 0 (see Figure 2.4). Answer: 7y + 19− 13x = 0.

1. Find the point of intersection of the tangent line to

C : x3 + y3 − xy = 7

at Q(−15
7 ,

16
7 ) with C. Answer: R = (9745552297 ,−

15584
52297) (Maple problem)

2.4 Derivatives of higher order

In this section we will take a look at some of the functions whose derivatives can be computed
for all orders. The simplest case is f(x) = ex, x ∈ R. It is clear that f (n)(x) = ex for all n ∈ N.
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The next situation when we can find basically all the derivatives is a polynomial function p. If
the degree of this polynomial has degree d, d ∈ mathbbN , then p(n)(x) = 0 for all n ≥ d+1. The
first d derivatives can be calculated with the Power Rule. This has a certain consequence later
on then we are going to talk about the Taylor polynomial and Taylor series for real analytical
functions.

One other case which is really simple is g(x) = 1
x for, say, x > 0. One can check that g′(x) = − 1

x2 ,
g′′(x) = 2

x3 , g
′′′(x) = − 6

x4 , and so the pattern we have here is

g(n)(x) =
(−1)nn!

xn+1
, x > 0, n ∈ N.

One example which is a little more difficult: f(x) = xex, x ∈ R. Using the Product Rule,
one can find the first few derivatives and obtain f ′(x) = (x+1)ex, f ′′(x) = (x+2)ex,.... Hence,
we guess that the general formula is f (n)(x) = (x+ n)ex.

In general, to establish a formula like these, we use in formal mathematics, a proof, most of
the time in these kind of examples, called (mathematical) induction proof or proof by induction.
The name comes from the fact that the proof is based on the Mathematical Induction Principle
(PMI).

Let us do an example like that. Suppose we take the function f(x) = (1+ x)1/2, x ≥ 0. If
we calculate the first derivative we get f ′(x) = 1

2(1+x)−1/2, x ≥ 0. Then, the second derivative

is f ′′(x) = −1
4 (1 + x)−3/2, x ≥ 0. Another step will give us the idea of how the derivative is

going to look in general: f ′′′(x) = 3
8(1 + x)−5/2, x ≥ 0. We want to show by induction on n ≥ 2

that

(2.4) f (n)(x) = (−1)n+1 (2n− 3)!!

2n
(1 + x)−

2n−1
2 , x ≥ 0.

(We used the notation (2k − 1)!! = 1(3)(5) · · · (2k − 1) for k ∈ N.)

We see that (2.4) is true for n = 2. Assume (2.4) is true for some n ≥ 2. Then

f (n+1)(x) = (−1)n+2 (2n− 3)!!(2n− 1)

2n+1
(1 + x)−

2n+1
2 , x ≥ 0

which is (2.4) for n+ 1 instead of n. The PMI applies and we conclude the (2.4) is true for all
n ≥ 2.

The possibility of computing all the derivatives of a function is related to the Taylor
expansion which we will see later in Calculus II. We include here a few such expansions:

ex = 1 +
x

1!
+
x2

2!
+ · · · , x ∈ R,

sinx = x− x3

3!
+
x5

5!
− ..., x ∈ R,
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Figure 2.5: Ellipse x2

400 + y2

225 = 1

arctan(x) = x− x2

2
+
x3

3
− ..., |x| < 1.

2.4.1 Problems

1. Find the nth-derivative of g(x) = 1
1+x

2
, x > 0. Use the pattern you discovered to give a

reasonable calculational formula for g(2011)(736).

2. Find the nth-derivative of h(x) = xe−x, x real number.

3. Let f be the function defined for all x: f(x) = x sinx. What is the 100th derivative of f?

2.5 Related rates problems

In this section we are going to show how the derivative concepts can be used to arrive at some
answers for reasonable questions involving movement. First, let us start with a geometry question
similar to the movement of the planets around the Sun. Suppose a point P of coordinates (x, y)
rotates on the ellipse (Figure 2.5)
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x2

202
+

y2

152
= 1

in counterclockwise direction in such a way the distance to the origin changes in a constant way
(| ddtOP | = 1). The question is, what are the values of dx

dt and dy
dt at the point (16, 9)? We know

that PO =
√
x2 + y2 and so −1 = d

dtOP =
2x dx

dt
+2y dy

dt

2
√

x2+y2
. Also, if we differentiate the the equation

of the ellipse, implicitly with respect to t, we get 2x
202

dx
dt +

2y
152

dy
dt = 0, or dx

dt = − 202(9)
152(16)

dy
dt = −dy

dt .

Hence, dx
dt = −dy

dt = −
√
337
7 ≈ −2.622508537.

2.5.1 Problems

1. Let a and b be positive real numbers such that a > b. The point P (x, y) moves on the ellipse
of equation

x2

a2
+
y2

b2
= 1

in such a way the distance to the origin has equation PO = a+b
2 + a−b

2 cos 2t where t is the time
measured from initial position (a, 0) at t = 0. How fast is the point P moving at time t = π

4? In

other words, what is v =

√
dx
dt

2
+ dy

dt

2
when t = π

4?

2. This problem appears in [6] (Problem 39, page 170). A conical watering pail has a grid of
holes uniformly distributed over all of its surface. The water flows out through the holes at a
rate of kA m3/min, where k is a constant and A is the surface area in contact with the water.
Calculate the rate at which the water level changes (dhdt ) at a level of the water of h meters.

2.6 Newton’s Approximation Scheme

In general equations of the form f(x) = 0, with f an elementary function, are not solvable in
terms of our elementary functions (in other words, f−1 may exist locally but it is not elementary),
and so we usually have to approximate the solutions when we know they exist. One of the
methods of approximating such solutions is given by the Newton’s Method which consists of
taking a first guess, say x0, and then constructing the tangent line at (x0, f(x0)) to the the
graph of y = f(x), y = f(x0) + f ′(x0)(x− x0), and then taking the intersection of this line with
y = 0, i.e. solving the equation 0 = f(x0)+f

′(x0)(x−x0) for x and considering this intersection
the next iteration:

x1 := x0 −
f(x0)

f ′(x0)
.

Of course, we need to assume that f ′(x0) ̸= 0 and that is usually happening if we are
in an interval I (containing the solution of f(x) = 0) where the sequence of iterations defined
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recursively by

(2.5) xn+1 := xn − f(xn)

f ′(xn)
, n ≥ 0,

is well defined and the derivative of f is bounded away from zero (|f ′(x)| ≥ δ > 0 for all x ∈ I),
and one can study the convergence of the sequence {xn} to the solution of f(x) = 0, say α.

Usually the convergence is quadratic, in the sense that the error sequence ϵn = |xn − α|,
satisfies some inequality of the form ϵn+1 ≤ Cϵ2n for some constant C.

One classical result here is the following theorem

Theorem 2.6.1. (Newton-Raphson Theorem). Assume that f : [a, b] → R is a twice differen-
tiable function, and f(α) = 0 form some α ∈ [a, b]. If f ′(α) ̸= 0, then there exists an ϵ > 0
such that the sequence defined by the iteration (2.5) converges to α for any initial approximation
x0 ∈ (α− ϵ, α+ ϵ).

Let us look at an example which goes back to Babylonians: approximating the square root
of a number. Suppose that a > 0 and f(x) = x2 − a. Then the iteration (2.5) can be written in
the form

xn+1 = xn − x2n − a

2xn
=

1

2
(xn +

a

xn
).

Sample Test II and Solutions

1. Consider the function f(x) =
1 + x

(2− x)2
. Find the equation of the tangent line to the graph of

y = f(x) at the point (12 ,
2
3). (Bonus: Use a graphing calculator to draw the graph of y = f(x)

and the above tangent line.)

Solution: Using the quotient rule and the product rule, we get

f ′(x) =
(2− x)2 − (1 + x)2(2− x)(−1)

(2− x)4
=

2− x+ 2 + 2x

(2− x)3
or

f ′(x) =
4 + x

(2− x)3
.

which gives f ′(1/2) = 9
2

8
27 = 4

3 . Hence, the equation is y = 2
3 +

4
3(x−

1
2) or y =

4x

3
. The graph

f and of the tangent line at (1/2, 2/3) on the interval [0, 0.6] is:
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2. Compute the derivative for each of the following functions:

(a) f(x) = (cos 2x)3(sin 3x)2 (b) g(x) =
√
x− x2

(c) h(x) = ln(x+
√
x2 + 1) (d) i(x) = e−2x sec(3x)− arctan(sinx)

Solution: (a) Using the product formula and the derivatives of sine and cosine, we get

f ′(x) = −6(cos 2x)2 sin 2x sin2 3x+ 6(cos 2x)3 sin 3x cos 3x .

(b) The derivative of g is

g′(x) =
1− 2x

2
√
x− x2

(c) We have seen that h′(x) = 1√
x2+1

.

(d) The derivative is

i′(x) = −2e−2x sec(3x) + 3e−2x sec(3x) tan(3x)− cosx

1 + sin2 x
.

3. Determine the equation of the tangent line to the graph of equation

x ln(y + 2)− y ln(3x− 1) = 0

at the point (3, 2).

Solution: We use implicit differentiation to get ln(y + 2) + x y′

y+2 − y′ ln(3x − 1) − y 3
3x−1 = 0.

Substituting x = 3 and y = 2 gives ln 4 + 3y′/4 − y′ ln 8 − 6/8 = 0. Solving for y′, we obtain

y′ = 3/4−ln 4
3/4−ln 8 ≈ 0.479. Hence the equation of the tangent line is y = 2 + (x− 3)

3− 4 ln 4

3− 4 ln 8
. The

graph of the implicit equation and of the tangent line is included next:
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4. Find the nth derivative of f(x) = x+1
3x+2 .

Solution: Since

f(x) =
3x+ 3

3(3x+ 2)
=

3x+ 2

3(3x+ 2)
+

1

3(3x+ 2)
=

1

3
+

1

3(3x+ 2)

we get f ′(x) = − 3
3(3x+2)2

= − 1
(3x+2)2

= −(3x+ 2)−2. Then the second derivative

f ′′(x) = 2(3)(3x+ 2)−3, f ′′′(x) = −(3!)(32)(3x+ 2)−4, f (4)(x) = (4!)33(3x+ 2)−5, .... and
in general

f (n)(x) = (−1)nn!3n−1(3x+ 2)−(n+1), n ≥ 1.

5. Differentiate y = (1 + 2x)x
2
.

Solution: Using the formula (uv)′ = vuv−1u′ + uv(lnu)v′, we obtain

y′ = 2x2(1 + 2x)x
2−1 + 2x(1 + 2x)x

2
ln(1 + 2x) .



Chapter 3

Applications

Quotation: Euclid taught me that without assumptions there is no proof. Therefore,
in any argument, examine the assumptions. —Eric Temple Bell (1883-1960)

“The word theorem in English derives from the Greek word theoreo which is a verb
that has to do with “the quality of attention that has the intention of mind which
contemplates an object studiously and attentively.” From Bullinger, E. W “A Crit-
ical Lexicon and Concordance to the ENglish and Greek New Testament”, Kregel
Publications Grand Rapids, Michigan 1908.

“Like fire in a piece of flint, knowledge exists in the mind. Suggestion is the friction
which brings it out.” Vivekananda

3.1 Fermat’s Theorem, Rolle’s Theorem, Mean Value Theorem,
Cauchy Theorem

Let us start with a theorem that is essential in showing all the important theorems in this
section. In what follows we assume that a, b are two real numbers such that a < b.

Theorem 3.1.1. (Extreme Value Theorem)Every continuous function f on a closed interval
[a, b] is bounded. Moreover, the bounds of f are attained, e.i. there exist two points α and β in
[a, b] such that f(α) ≤ f(x) ≤ f(β) for all c ∈ [a, b].

Sketch of proof. If the function is not bounded then there exists a sequence xn such that
|f(xn)| → ∞. There must be a point in [a, b] to which the sequence xn accumulates, or in other
words, there must be a subsequences xnk

convergent to a point c ∈ [a, b]. Since f is assumed to
be continuous |f(c)| = limk→∞ |f(xnk

)| = ∞. This is not possible. Hence the range of f must
be a bounded interval because of the Intermediate Value Theorem (which we have seen before).
This interval cannot be of the form [c, d) because of the continuity argument used above.

The assumption that we have a closed interval is critical. If we only take an open interval,
like f(x) = 1

x(1−x) defined on (0, 1), we see that this function is continuous and unbounded.

Theorem 3.1.2. (Fermat’s Theorem) Let f be a differentiable function on (a, b) and con-
tinuous on [a, b]. If c ∈ (a, b) is a point of local maximum or local minimum, then f ′(c) = 0.

59
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Figure 3.1: Example for Rolle’s Theorem

Proof. Without loss of generality we may assume that f(c) ≤ f(x) for all x ∈ (c− ϵ, c+ ϵ) for
some small ϵ > 0. By definition of the derivative we must have

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

If we let x < c, we have x− c < 0 and so f(x)−f(c)
x−c ≤ 0 which implies f ′(c) ≤ 0. If we let x > c,

then x − c > 0 and f(x)−f(c)
x−c ≥ 0 which implies so f ′(c) ≥ 0. This is possible only if f ′(c) = 0.

Theorem 3.1.3. (Rolle’s Theorem) Let f be a differentiable function on (a, b) and continuous
on [a, b]. If f(a) = f(b), then, there exists a c ∈ (a, b) such that f ′(c) = 0.

Proof. The function f is either a constant function, in which case the conclusion is clearly
true, or a non constant function. Hence, we have a point x0 where either f(x0) < f(a) = f(b)
or f(x0) > f(a) = f(b). Without loss of generality we may assume that f(x0) < f(a) = f(b).
Then let c be the point given by Theorem 3.1.1 such that f(c) ≤ f(x) for all x ∈ [a, b]. Since
f(c) ≤ f(x0) < f(a) = f(b) we must have c ∈ (a, b). By Fermat’s Theorem, we must have
f ′(c) = 0.

Theorem 3.1.4. (Mean Value Theorem) Let f be a differentiable function on (a, b) and
continuous on [a, b]. Then, there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Sketch of Proof. Let us consider the function g(x) = f(x) −mx where m = f(b)−f(a)
b−a . One

can see that this function satisfies the hypothesis of Role’s theorem. Hence, there must be a
c ∈ (a, b) such that g′(c) = 0. This implies the desired conclusion.
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The next corollary is very close to the First Law of Classical Mechanics: “The velocity of a body
remains constant unless the body is acted upon by an external force.”

Corollary 3.1.5. (“First Principle of Classical Mechanics”) Let f be a differentiable
function on (a, b) and continuous on [a, b]. If f ′(x) = 0 for all x ∈ (a, b), then there exists a
constant C such that f(x) = C for all x ∈ [a, b].

Proof. Suppose by way of contradiction that f is not a constant. Then we can find x1 < x2,
a ≤ x1 < x2 ≤ b, such that f(x1) ̸= f(x2). Then by Mean Value Theorem applied to f on

[x1, x2] we find a c ∈ (x1, x2) such that f ′(c) = f(x2)−f(x1)
x2−x1

̸= 0. This contradiction gives the
result.

Radioactive Decay: Here is an application of this result. Let us assume a ∈ R, a > 0 (decay
constant). Suppose that we have a function f which satisfy the differential equation:

f ′(x) = −af(x) for all x ∈ R,

which is saying that the amount of radioactive substance rate of change (decreasing) is propor-
tional to the amount of radioactive substance left. Let us show that the only functions which
satisfy this equation are f(x) = Ce−ax, for all x ∈ R. Indeed, we look at the newly defined
function g(x) = f(x)eax and compute its derivative: g′(x) = f ′(x)eax + af(x)eax = 0 for all
x ∈ R. By Corollary 3.1.5, we must have g(x) = C for all x ∈ R. Hence f(x) = Ce−ax for all
x ∈ R.

“Propagation of light”: Let us show that the differential equation f ′′ + f = 0 has only the
solution f(x) = C1 sinx + C2 cosx, x ∈ R. We consider the new function g(x) = f ′(0) sinx +
f(0) cosx− f(x). Let us observe that g(0) = g′(0) = 0 and g′′ + g = 0. Let us look at another
function h(x) = g(x)2 + g′(x)2, x ∈ R. We observe that h′(x) = 2g(x)g′(x) + 2g′(x)g′′(x) = 0,
x ∈ R. Hence by Corollary 3.1.5, h(x) = C for all x ∈ R. Since h(0) = 0 we see that h(x) = 0
for all x ∈ R. Therefore g(x) = 0 for all x ∈ R. So, f(x) = C1 sinx+ C2 cosx, x ∈ R.

Theorem 3.1.6. (Cauchy’s Theorem) Let f , g be two functions continuous on [a, b] (a < b),
differentiable on (a, b) such that g′(x) ̸= 0 for all x ∈ (a, b). Then there exists a ξ ∈ (a, b) such
that

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)
.

Proof. Let us consider the function h(x) = f(x) − kg(x) where k = f(b)−f(a)
g(b)−g(a) . This number

is well defined since g(b) = g(a) would imply by Rolle’s Theorem that g′(c) = 0 for some
c ∈ (a, b), which is not possible by our assumption. We apply Rolle’s Theorem to h on [a, b].
Clearly h is continuous and differentiable on [a, b] (resp (a, b)). Also, h(b) = h(a) is equivalent

to f(b)− kg(b) = f(a)− kg(a) or k = f(b)−f(a)
g(b)−g(a) (true by definition of k). Hence we must have a

ξ ∈ (a, b) in such a way, that h′(ξ) = 0. This is equivalent to f ′(ξ)− kg(ξ) = 0 or f ′(ξ)
g′(ξ) = k.

Here is another application of the sort of differential equation we have seen before.

Problem: Let us assume that f is a differential function on some interval I = (a, b) such that
f ′(x) = f(x)2 and f(x) ̸= 0 for all x ∈ I. Show that there exists a constant C ̸∈ I such that
f(x) = 1

C−x for all x ∈ I.
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Proof. We consider g(x) = 1
f(x) which is well defined for x ∈ I. Then g′(x) = −f ′(x)

f(x)2
= −1 and

so (g(x) + x)′(x) = 0. Hence g(x) + x = C for some constant C. This implies f(x) = 1
C−x for

x ∈ I. It is clear that C ̸∈ I.

3.1.1 Problems

1. Let a > 0 and f a function twice differentiable on R such that f ′′(x) + a2f(x) = 0 for all
x ∈ R. Show that there exists two constants C1 and C2 such that f(x) = C1 sin ax + C2 sin ax
for all x ∈ R.

2. Consider a differentiable function f is a differential function on some interval I = (a, b)
such that f ′(x) = f(x)3 and f(x) ̸= 0 for all x ∈ I. Show that there exists a constant C, such
that f(x) = ±1√

C−2x
, x ∈ I.

3. [Darboux Property for derivatives] Consider f : [a, b] → R a differentiable function
and some real number s such that f ′(a) < s < f ′(b). Follow the following steps to prove the
Darboux Property for derivatives (see Lars Olsen [5]):

(i) show that u(x) =


f(x)−f(a)

x−a if x > a

f ′(a) if x = a

and v(x) =


f(b)−f(x)

b−x if x < b

f ′(b) if x = b

are con-

tinuous functions.

(ii) check that t = u(b) = v(a) and if s = t then we can apply MVT to f and conclude
that m = f ′(c) for some c ∈ (a, b).

(iii) if s < t we can apply IVT to u and then MVT to f and conclude that m = f ′(c) for
some c ∈ (a, b).

(ii) if t < s we can apply IVT to v and then MVT to f and conclude that m = f ′(c) for
some c ∈ (a, b).

4. Consider a differentiable function f on [−1, 1] such that f(−1) = −3, f(0) = −5 and
f(1) = 2. Prove that there is a point c ∈ (−1, 1) such that f ′(c) = 4.

5. [Putnam Exam]Let f be a three times differentiable function on R having at least five
distinct real zeroes. Show that

f + 6f ′ + 12f ′′ + 8f ′′′

has at least two distinct real zeroes.

3.2 L’Hospital’s Rule

L’Hospital Rule is a technique used in the computation of limits in order to reduce them to
elementary ones. There are two main cases in which one uses L’Hospital’s Rule. Let us start
with the case when the limit of the second function is ∞.
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Theorem 3.2.1. Let us assume that f and g are two functions defined on some domain D
containing a as a limit point. In addition we know that g(x) ↗ ∞ (it goes increasingly to

infinity, i.e. g′(x) > 0, as x ∈ D goes to a) and limx→a
f ′(x)
g′(x) = L. Then limx→a

f(x)
g(x) = L.

Proof Sketch: We fix an ϵ ∈ (0, 1). Let us assume that if 0 < |x − a| < δ1 we have

|f
′(x)

g′(x) − L| < ϵ
4 . For u fixed but satisfying the same inequality, i.e. 0 < |u− a| < δ1, we look at

|f(x)
g(x)

− f(x)− f(u)

g(x)− g(u)
| =

∣∣∣∣∣∣
f(u)
g(x) −

f(x)
g(x)

g(u)
g(x)

1− g(u)
g(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
f(u)−Lg(u)

g(x) − (f(x)g(x) − L)g(u)g(x)

1− g(u)
g(x)

∣∣∣∣∣∣ ,
we observe that if we let 0 < |x− a| < δ2 = δ2(u, ϵ) < δ1, g(x) is big enough to insures that

|f(x)
g(x)

− f(x)− f(u)

g(x)− g(u)
| ≤ ϵ

4
+ |f(x)

g(x)
− L| ϵ

4
.

By Cauchy’s Theorem we have f(x)−f(u)
g(x)−g(u) =

f ′(cc,u)
g′(cx,c)

with cx,u between x and u which makes it

satisfy 0 < |cx,u − a| < δ1. Hence

|f(x)− f(u)

g(x)− g(u)
− L| = |f

′(cc,u)

g′(cx,c)
− L| < ϵ

4
.

Therefore, one can use the triangle inequality, and the above inequalities to get

|f(x)
g(x)

− L| ≤ |f(x)
g(x)

− f(x)− f(u)

g(x)− g(u)
|+ |f(x)− f(u)

g(x)− g(u)
− L| < ϵ

2
+ |f(x)

g(x)
− L| ϵ

4
=⇒

(1− ϵ

4
)|f(x)
g(x)

− L| ≤ ϵ

2
=⇒ |f(x)

g(x)
− L| < ϵ

2
(
4

3
) < ϵ.

Let’s see some applications of this very powerful rule. We have some limits in Chapter I
which we now prove with this rule. For instance,

lim
x→∞

x2

ex
L′H
= lim

x→∞

2x

ex
=

L′H
= lim

x→∞

2

ex
= 0.

In a similar way one can show any of the cases in (1.23). Clearly, (1.24) follows from (1.23), but
we can use L’Hospital, for example,

lim
x→∞

lnx√
x

L′H
= lim

x→∞

1/x

1/(2
√
x)

= lim
x→∞

2√
x
= 0.

The second version of L’Hospital Rule is when both functions approach 0.

Theorem 3.2.2. Let us assume that f and g are two functions defined on some domain D
containing a as a limit point. In addition we know that f(x), g(x) → 0 and g′(x) ̸= 0, as x ∈ D

goes to a. Finally, if limx→a
f ′(x)
g′(x) = L. Then limx→a

f(x)
g(x) = L.
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The proof goes the same way as before and we let it as an exercise for the reader.

Let’s look at some of the fundamental limits in Chapter I. First, we have for the second
fundamental limit (1.16)

lim
x→0

ln(1 + x)

x

L′H
= lim

x→0

1/(1 + x)

1
= lim

x→0

1

1 + x
= 1.

Notice that we have a vicious circle here since we arrived at the derivatives of the ele-
mentary functions by using the fundamental limits. So, when we define these transcendental
functions more precisely, we will have to prove those limits independent of the L’Hospital’s Rule
or any differentiation technique. Let us show one other example of how can we obtain pretty good
information about a function with L’Hospital’s Rule. Let us prove that sinx = x− x3

6 +O(x5),

here we used a classical notation, f(x) = g(x)+O(h(x)), which means that f(x)−g(x)
h(x) is bounded

as a function of x in a certain domain. Indeed, first

lim
x→0

sinx− x

x3
L′H
= lim

x→0

cosx− 1

3x2
L′H
= lim

x→0

− sinx

6x
= −1

6
, and

lim
x→0

sinx− x+ x3

6

x5
L′H
= lim

x→0

cosx− 1 + x2

2

5x4
L′H
= lim

x→0

− sinx+ x

20x3
=

1

120
.

This implies that sinx = x− x3

6 +O(x5) for all x ∈ R. What is interesting is that a more precise
statement is true, as the Figure 3.5 suggests, and its proof is left as an exercise:

| sinx− x+
x3

6
| ≤ |x|5

120
, x ∈ R.

3.2.1 Problems

1. Prove the second version of L’Hospital’s Rule.

2. Prove the inequality

| sinx− x+
x3

6
| ≤ |x|5

120
, x ∈ R.

3. Prove the inequality

| cosx− 1 +
x2

2
| ≤ x4

24
, x ∈ R.
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Figure 3.2: Graph of y =
sinx−x+x3

6
x5 , x ̸= 0, x ∈ [−10, 10]

4. Use L’Hospital’s Rule to show that

lim
x→0

ex − 1− x− x2

2

x3
=

1

6
.

5. Use L’Hospital’s Rule to show that

lim
x→0

tanx− x

x3
=

1

3
.

6. Use L’Hospital’s Rule to show that

lim
x→0

arctanx− x+ x3

3

x5
=

1

5
.

7. Prove the inequality

| arctanx− x+
x3

3
| ≤ |x|5

5
, x ∈ R.

8. Use L’Hospital’s Rule to show that
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lim
x→0

√
1 + x− 1− x

2 + x2

8

x3
=

1

16
.

9. Prove the inequality

|
√
1 + x− 1− x

2
+
x2

8
| ≤ 3|x|3

8
, x ∈ [−1,∞).

10. Let a > 0 and f be differentiable on (0,∞) such that f ′(x) + af(x) → L. Show that
f(x) → L

a .

3.3 Optimization Problems

Let us take a look at three optimization problems which are classic. First, we want to prove the
Arithmetic-Geometric Mean inequality:

(3.1) n ∈ N, n ≥ 2, a1, a2, ..., an ≥ 0 =⇒ a1 + a2 + ...+ an
n

≥ n
√
a1a2...an.

Consider the function f(x) = a1+a2+...+x
n − n

√
a1a2...an−1x defined for all x ≥ 0. We see that

f(0) ≥ 0, and f ′(x) = 1
n − 1

n
n
√
a1a2...an−1x

1−n
n . We may assume that a1, a2, ..., an−1 > 0 and, in

this case, we see that the only critical point of f is x0 = n−1
√
a1a2...an−1. This is clearly a point

of minimum for f and if we calculate f(x0) we see that

f(x0) =
n− 1

n

(
a1 + a2 + ...+ an−1

n− 1
≥ n−1

√
a1a2...an−1

)
.

We observe that this reduces the problem to n−1 non-negative numbers. This argument can then
be repeated until we arrive at only two numbers a1 and a2. It is clear that (a1 + a2)/2 ≥ √

a1a2
is true because it is algebraically equivalent to (

√
a1 −

√
a2)

2 ≥ 0.

Let us consider now the problem of finding the maximum volume cone inscribed in a sphere
(see Figure 3.3). The radius of the sphere is R > 0 and the radius of the cone is r > 0. Hence the

hight of the cone is h = R+
√
R2 − r2, and so the volume is V = πr2h

3 = π
3 (r

2R+ r2
√
R2 − r2).

We look at the derivative of V with respect to r

V ′(r) =
π

3
(2rR+ 2r

√
R2 − r2 − r3√

R2 − r2
), or

V ′(r) =
rπ

3
√
R2 − r2

(2R
√
R2 − r2 + 2(R2 − r2)− r2).
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r

R

Figure 3.3: Cone inscribed in a sphere

The equation V ′(r) = 0 is equivalent to 2R
√
R2 − r2 = 3r2 − 2R2 or

4R4 − 4R2r2 = 9r4 − 12r2R2 + 4R4 ⇐⇒ r = r0 :=
2
√
2R

3
.

We notice that V (r0) =
πr20h
3 = π(8)R3

27 (1 + 1
3) = 32πR3

81 . Since we have V (0) = 0 and V (R) =
πR3

3 < 32πR3

81 we see that we could assume that the center of the sphere is inside the cone. We
have only one critical point so this must be the maximum. If we denote this maximum by Vc
and the volume of the sphere by Vs we observe that Vc

Vs
= (23)

3.

Finally, let us prove the Cauchy-Schwartz inequality:

a1, a2, ...., an, b1, b2, ....bn =⇒ (a21 + a22 + ...+ a2n)(b
2
1 + b22 + ...+ b2n) ≥ (a1b1 + a2b2 + ...+ anbn)

2.

Let us consider the function g(x) = (a1 − b1x)
2 + (a2 − b2x)

2 + ...+ (an − bnx)
2 which satisfies

clearly g(x) ≥ 0 for all real numbers x. The function g is a quadratic since g(x) = (a21 + a22 +
...+ a2n)− 2(a1b1 + a2b2 + ...+ anbn)x+ (b21 + b22 + ...+ b2n)x

2 = A− 2Bx+ Cx2. Its minimum
is attained at x0 which is the solution of g′(x) = 0. We can assume that C > 0, otherwise the

inequality is trivially satisfied. Then x0 = B
C and so, in particular, g(x0) =

AC−B2

C ≥ 0, which
is equivalent to our inequality of interest.
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Figure 3.4: Graph of y = x3−x
x2+1

3.4 Sketching Graphs of Elementary Functions

For some simple functions, if we use the information about the function, such as the x-intercepts,
y-intercept, asymptotes, symmetry, the information about the derivative and its second deriva-
tive, we can draw the graph of the function with pretty good accuracy. We are going to exemplify-
ing this first with f(x) = x3−x

x2+1
, x ∈ R. We see that the x-intercepts are x = 0, x = 1 and x = −1.

The function is odd because f(−x) = −f(x), so its graph is symmetric with respect to the origin.

We have f ′(x) = x4+4x2−1
(x2+1)2

, which gives the critical points x1,2 = ±
√√

5− 2 ≈ ±0.4858682712.

The second derivative is given by f ′′(x) = −4x(x2−3)
(x2+1)3

which gives inflection points x3 = 0,

x4,5 = ±
√
3 ≈ ±1.732050808. We have a slant asymptote since f(x) = x− 2x

x2+1
. This identity

shows that y = x is the slant asymptote. All the information leads to the graph of f shown in
Figure 3.4.

Let us mention that y = mx+ n is a slant asymptote of f at ∞, if m = limx→∞
f(x)
x and

n = limx→∞ f(x)−mx. The same definition goes for −∞.

Next, we are going to look at an example of an elementary function which has a horizontal

asymptote at ∞ and a slant asymptote at −∞. Let g(x) =
√
x6+1−x3

x2+1
, x ∈ R. We are going to

use Maple to do some computations here, for getting

g′(x) =
(x3 −

√
x6 + 1)x(3x3 + 3x+ 2

√
x6 + 1)

(x2 + 1)2
√
x6 + 1

.

There are only two critical which can be computed exactly x1 = 0 and x2 = −
√

10
√
249− 130/10 ≈

−0.5272318124. One can check that y = −2x is a slant asymptote at −∞ and y = 0 is a horizon-
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Figure 3.5: Graph of y = g(x), x ∈ [−5, 5]

tal asymptote at ∞. We are not going to look at the second derivative. The graph of y = g(x)
is shown in Figure 3.5.
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Chapter 4

Definite Integral

Quotation: “Every minute dies a man, Every minute one is born;” I need hardly
point out to you that this calculation would tend to keep the sum total of the world’s
population in a state of perpetual equipoise, whereas it is a well-known fact that the
said sum total is constantly on the increase. I would therefore take the liberty of
suggesting that in the next edition of your excellent poem, the erroneous calculation
to which I refer should be corrected as follows: ”Every moment dies a man, and one
and a sixteenth is born.” I may add that the exact figures are 1.067, but something
must, of course, be conceded to the laws of the metre. Charles Babbage, letter to
Alfred, Lord Tennyson, about a couplet in his ”The Vision of Sin”

4.1 Antiderivative and some previous formulae

Let us start with the definition of the anti-derivative of a function. We say that F differentiable
on D (in general a union of intervals) is the antiderivative of f defined on D, if F ′(x) = f(x) for
all x ∈ D. It is clear that if F is an antiderivative of f then F+c is too, for every constant c. The
notation used to go from a function f to its antiderivative F , if it exist, is

∫
f(x)dx = F (x)+C.

So we can write all the differentiation formulae we have seen so far with this new notation:

∫
xαdx =

xα+1

α+ 1
+ C,where α ̸= −1, and

∫
1

x
dx = ln |x|+ C,

∫
aαxdx =

aαx

α ln a
+ C, a ̸= 1, a > 0, α ̸= 0,

∫
lnxdx = x lnx− x+ C, x > 0,

∫
sinαxdx = −cosαx

α
,

∫
cosαxdx =

sinαx

α
, α ̸= 0,

71
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∫
tanαxdx = − ln | cosαx|

α
+ C,

∫
cotαxdx =

ln | sinαx|
α

+ C, α ̸= 0,

∫
secαxdx =

ln | secαx+ tanαx|
α

+ C,

∫
cscαxdx = − ln | cscαx+ cotαx|

α
+ C, α ̸= 0,

∫
sec2 αxdx =

tanαx

α
+ C,

∫
csc2 αxdx = −cotαx

α
+ C, α ̸= 0,

∫
1

x2 + α2
dx =

1

α
arctan

x

α
+ C, α ̸= 0,

∫
1√

α2 + x2
dx = ln(x+

√
α2 + x2) + C,

(4.1)

∫
1√

α2 − x2
dx = arcsin(

x

α
) + C.

∫
1

x2 − α2
dx =

1

2a
ln

∣∣∣∣x− a

x+ a

∣∣∣∣+ C.

Let us point out that these rules are basically just our pervious differentiation rules “in
reverse”. The whole process of integration becomes all of a sudden a lot trickier when we
throw in the chain rule. For instance, let us look at the problem of finding the anti-derivative of

f(x) = ex

1+e2x
. We observe that f(x) = g′(x)

1+g(x)2
, where g(x) = ex, so

∫
f(x)dx = arctan g(x)+C =

arctan ex+C. In Calculus II, we will study a variety of techniques that will make the process of
integration more straightforward. We will see in this chapter just one of them, called, integration
by substitution, but we will do it in the context of definite integrals.

Since the derivative is a linear operation we can easily observe that∫
[αf(x) + βg(x)]dx = α

∫
f(x)dx+ β

∫
g(x)dx,

the equality is “up to a constant”, i.e. one needs to add appropriate constants to get the equality.

Examples: Compute an antiderivative of each of the following functions:

(a) f(x) =
x2 − 2x+ 3

x4
,

(b) g(x) = x sin(x2)− 1

1 + 9x2
,

(c) h(x) =
x+ 2

x2 − 1
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Solutions: (a) We have f(x) = x−2−2x−3+3x−4 and therefore
∫
f(x)dx = − 1

x−2x−2

−2 +3x−3

−3 +C

or
∫
f(x)dx = − 1

x + 1
x2 − 1

x3 + C. If we want to put the answer in the same form as the given
function then ∫

f(x)dx =
x− x2 − 1

x3
+ C .

(b) Here we need to think of the chain rule in reverse. So we have

∫
g(x)dx =

1

2

∫
2x sin(x2)dx− 1

3

∫
3

1 + (3x)2
dx =

= −cos(x2)

2
− arctan(3x)

3
+ C .

(c) We split it as follows: h(x) = x
x2−1

+ 1
x−1 − 1

x+1 and then

∫
h(x)dx =

1

2

∫
2x

x2 − 1
dx+

∫
1

x− 1
dx−

∫
1

x+ 1
dx =

ln |x2 − 1|
2

+ ln |x− 1| − ln |x+ 1|+ C =
1

2
ln |x2 − 1| |x− 1|2

|x+ 1|2
+ C,

or

∫
h(x)dx =

1

2
ln

|x− 1|3

|x+ 1|
+ C.

More examples (the techniques used here are going to be studied in more detail
in the next several sections):

Compute an antiderivative of each of the following functions:

(a) f(x) =
x3 − x2 + 3x+ 1

x4
,

(b) g(x) = x cos(x2)− 1

4 + x2
,

(c) h(x) =
3x+ 5

(x+ 1)(x− 4)

Solutions: (a) Usual formulae for computing the antiderivative give∫
f(x)dx =

∫
1

x
dx−

∫
x−2dx+ 3

∫
x−3dx+

∫
x−4dx = ln |x|+ 1

x
− 3

2x2
− 1

3x3
+ C,

so,
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∫
f(x)dx = ln |x|+ 1

x
− 3

2x2
− 1

3x3
+ C.

(b) For the antiderivative of g use the chain rule in “reverse” and remember the rule of
differentiation of the tan−1:

∫
g(x)dx =

1

2
sinx2 − 1

2
arctan(x/2) + C.

(c) We first decompose 3x+5
(x+1)(x−4) =

A
x−4 +

B
x+1 . Solving for A and B one gets A = 17

5 and

B = −2
5 . Then

∫
h(x)dx =

17

5

∫
1

x− 4
dx− 2

5

∫
1

x+ 1
dx =

17

5
ln |x− 4| − 2

5
ln |x+ 1|+ C,

and so ∫
h(x)dx =

1

5
ln

|x− 4|17

|x+ 1|2
+ C.

4.1.1 More Homework Problems

1. Find an antiderivative of the following functions:

(A) f(x) = x2 − 2x− 1
x + 3

x2 , x ̸= 0,

(B) g(x) = x+1
x3 , x ̸= 0,

(C) h(x) = 2 sinx− 3 cos 2x, x ∈ R,

(D) i(x) = tan2 x, x ∈ (−π/2, π/2),

(E) j(x) = e2x + 23x, x ∈ R,

(F) k(x) = log2 x, x > 0,

(G) l(x) = 1
x2−4

, x > 2,

(H) m(x) = x
x2+1

, x ∈ R

2. Calculate
∫
x sinxdx and

∫
x cosxdx.

3. Calculate
∫
xexdx and

∫
xe2xdx.

4. Find a twice differentiable function f such that f(1) = f ′(1) = 0 and f ′′(x) = 1
x for all

x > 0.

5. Find a twice differentiable function f such that f(−1) = f ′(−1) = 0 and f ′′(x) = 1
x for all

x < 0.
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6. (Chain rule combinations) Find an antiderivative of the following functions:

(a) f(x) = 2 sin(2x+ 1)− 3 cos(3x− 1), x ∈ R,

(b) g(x) = (2x+ 1)ex
2+x, x ∈ R,

(c) h(x) = 2x+1
x2+x+1

, x ∈ R

4.2 Definite Integral

This is the third most important concept in Calculus besides the notions of limit and derivative.
We are going to introduce it for the so called Riemann Integral, but it can be generalized to cover
a bigger class of functions. At this point, let us assume that f is a real valued function defined
on the closed interval [a, b] with a < b. For n ∈ N, we let a = x0 < x1 < x2... < xn = b be a
partition of [a, b] into n-intervals, which are not necessarily equal in length, and some arbitrary
points ck ∈ [xk−1, xk], k = 1, ..., n. The number δ = max{xi − xi−1 : i = 1, ..., n} is called the
norm of the partition ∆ := (x0, x1, x2, ..., xn), x0 = a < x1 < x2 < ... < xn = b.

Definition 4.2.1. We say that f is Riemann integrable on the interval [a, b] if the limit

(4.2) ℓ := lim
δ→0

n∑
i=1

f(ci)(xi − xi−1)

exists. The limit is understood in the sense that ci and the partition are arbitrary. The limit ℓ
is usually denoted by ∫ b

a
f(x)dx.

Sums of the form
∑n

i=1 f(ci)(xi − xi−1), as in (4.2), are called Riemann sums. It turns
out that every continuous function on a closed interval is Riemann integrable. This is a result
that is taught in a more advanced courses, like Real Analysis I or II (for mathematics majors).
There are discontinuous functions which are still Riemann integrable. One interesting example
is the function

g(x) =


sin 1

x if x ̸= 0,

0 if x = 0

,

which has an essential discontinuity at zero. However, the Riemann integral of g over [0, π] exists
and it is about 1.575936300. A finite number of discontinuities in [a, b] (especially of the ones
where sided limits exist) do not pose any problems for the Riemann integral. So, a function like

s(x) =


sinx
| sinx| if x ̸= kπ, k ∈ Z

0 if x = kπ, k ∈ Z
,
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is Riemann integrable for every interval [a, b]. (A nice exercise here is to compute
∫ 2018
2000 s(x)dx).

One classical example of a function which is not Riemann integrable is given by

h(x) =


1 if x ∈ Q,

0 if x ̸∈ Q
.

One can see that the limit in (4.2) doesn’t exist since we can pick in every interval a rational ck
or an irrational ck. That changes the sum from 1 to 0, for every partition.

One of the geometrical interpretations of the number
∫ b
a f(x)dx is the area under the

graph of y = f(x), x-axis x = a and x = b. The next theorem gives a very interesting way of
computing the above limits in terms of an antiderivative of f and at the same time gives the
existence of an anti-derivative of a continuous function.

Theorem 4.2.2. (Fundamental Theorem of Calculus-FTC.)

(a) Let f be a real-valued function defined on [a, b] which is continuous. If F (x) =
∫ x
a f(t)dt

for all x ∈ [a, b]. Then F ′(x) = f(x) for all x ∈ [a, b].

(b) If f is Riemann integrable and F is an anti-derivative of f , then
∫ b
a f(t)dt = F (b) −

F (a).

Let us look at some applications of the FTC.

Problem 1. Let F (x) =

∫ 3x3−2x

x2

1

t+ ln t
dt for x ∈ [1,∞). Find the derivative of F (x) and

then compute F (1).

Solution: The function g(t) = 1
t+ln t is well defined and an elementary function on the interval

t ∈ [1,∞). By FTC part (a) if we introduce G(x) =
∫ x
1

1
t+ln tdt for x ≥ 1, we have G′(t) = g(t),

for all t. This means that G is an anti-derivative of g. By part (b) of FTC, we see that
F (x) = G3(x3 − 2x)−G(x2). As a result, chain rule gives

F ′(x) = G′(3x3 − 2x)(9x2 − 2)−G′(x2)(2x).

But G′(3x3− 2x) = g(3x3− 2x) = 1
3x3−2x+ln(x3−2x)

and G(x2) = g(x2) = 1
x2+ln(x2)

. Substituting

we obtain

F ′(x) =
9x2 − 2

3x3 − 2x+ ln(x3 − 2x)
− 2x

x2 + ln(x2)
, x ≥ 1.

From here we just substitute x = 1 and obtain F ′(1) = 9− 2− 2 = 5 .

This next problem is a little more trickier.

Problem 2. Let f(x) =

∫ sinx

cosx

1√
1− t2

dt for x ∈ [0, π2 ]. Find the derivative of f(x) and then

find f(x).

Solution: Using the FTC and the chain rule, we get
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f ′(x) = d
dx

∫ sinx
0

1√
1−t2

dt− d
dx

∫ cosx
0

1√
1−t2

dt =
1√

1−sin(x)2
cosx− 1√

1−cos(x)2
(− sinx) = cosx

cosx + sinx
sinx = 2 , x ∈ [0, π2 ].

Hence f(x) = 2x+ C. Since f(π/4) = 0, we must have f(x) = 2x− π
2 .

Let us observe that one ca use FTC part (b) and formula (4.1) and arrive at the same result:

f(x) = arcsin(sinx))− arcsin(cosx)) = x− arcsin(sin(π/2− x)) =

x− (π/2− x) = 2x− π/2, x ∈ [0, π2 ].

P roblem 3. Differentiate the function F (x) =

∫ tanx

− tanx

1

1 + t2
dt.

Solution: We define G(x) =
∫ x
0

1
1+t2

dt and observe that G′(x) = 1
1+x2 and F (x) = G(tanx)−

G(− tanx). Then

F ′(x) = G′(tanx) sec2 x−G′(− tanx)(− sec2 x) =
sec2 x

1 + tan2 x
+

sec2 x

1 + tan2 x
= 2

So,

F ′(x) = 2 .

Another application of the FTC and the fact that continuous functions are Riemann
integrable, is the next exercise of calculating a special type of limit.

Problem 4. Find the value of the limit lim
n→∞

n
2n∑
k=1

1

4n2 + k2
.

Solution: We write this limit as the limit of a Riemann sums:

lim
n→∞

n

2n∑
k=1

1

4n2 + k2
= lim

n→∞

2n∑
k=1

n

4n2
1

1 + ( k
2n)

2
=

= 1
2 lim
n→∞

2n∑
k=1

1

2n

1

1 + ( k
2n)

2
=

1

2

∫ 1

0

1

1 + x2
dx =

1

2
arctanx|10 =

1

2

π

4
=
π

8
.

Therefore lim
n→∞

n

2n∑
k=1

1

4n2 + k2
=
π

8
.

Problem 5. Find the value of the limit

lim
n→∞

1

3n+ 1
+

1

3n+ 2
+ . . .+

1

4n
.
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Solution: We use the sigma notation to rewrite this limit as

lim
n→∞

n∑
k=1

1

3n+ k
= lim

n→∞

n∑
k=1

1

n

1

3 + k/n
=

∫ 1

0

1

3 + x
,

so after computing the integral we get

lim
n→∞

1

3n+ 1
+

1

3n+ 2
+ . . .+

1

4n
= ln(4/3).

4.2.1 Homework Problems

Problem 1. Let f(x) =

∫ 3x−2

2x−1

1

t2 + 2
dt for x ∈ R. Find the derivative of f(x).

Problem 2. Let f(x) =

∫ tanx

− tanx

√
1 + t2dt for x ∈

(
−π

2 ,
π
2

)
. Find the derivative of f(x) and

then find f(π/6).

Problem 3. Find the value of the following limit:

lim
n→∞

sin π
4n + sin 2π

4n + ...+ sin nπ
4n

n
Answer :

4− 2
√
2

π

Problem 4. Find the value of the following limit:

lim
n→∞

5n∑
k=1

1

n+ k
Answer : ln(6)

Problem 5. What is the exact value of the limit:

lim
n→∞

n
n∑

k=1

1

n2 + k2
? Answer :

π

4

Problem 6. What is the exact value of the limit:

lim
n→∞

n
3n∑
k=1

1

n2 + k2
? Answer : arctan(3)

Problem 7. Find the value of the following limit:

lim
n→∞

4n∑
k=1

1√
9n2 + k2

Answer : ln(3)
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Problem 8. Find the value of the following limit:

lim
n→∞

(
1

3n+ 1
+

1

3n+ 3
+

1

3n+ 5
+ ...+

1

5n− 1

)
Answer :

1

2
ln(5/3)

Problem 9. Find the value of the following limit:

lim
n→∞

4n∑
k=1

1√
25n2 − k2

Answer : arcsin(4/5)

Problem 10. What is the exact value of the limit:

lim
n→∞

1

n

n∑
k=1

k√
n2 − k2

? Answer : 1

Problem 11. What is the exact value of the limit:

lim
n→∞

n∑
k=1

1√
n2 + kn

? Answer : 2
√
2− 2

4.3 Integration using a substitution

We are mainly concerned with the change of variables in the definite integral. The chain rule
d
dtF (u(t)) = f(u(t))u′(t) where F is an anti-derivative of f , and the FTC gives the following
formula

∫ b

a
f(x)dx = F (b)− F (a) =

∫ tb

ta

f(u(t))u′(t)dt

where u(ta) = a and u(tb) = b, and u : [ta, tb] → [a, b] is a differentiable function called the
substitution (x = u(t)).

Problem 1. Calculate the definite integral

∫ 5

0

x√
3x+ 1

dx.

Solution: Changing the variable 3x+ 1 = u2 gives 3dx = 2udu

∫ 5

0

x√
3x+ 1

dx =

∫ 4

1

u2 − 1

3u

2udu

3
=

2

9
(
u3

3
|41 − u|41) = 4,

so ∫ 5

0

x√
3x+ 1

dx = 4 .
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Problem 2. Calculate the definite integral

∫ 4

0

9− 5x√
2x+ 1

dx.

Solution: We change the variable t2 = 2x+ 1 (tdt = dx)and obtain

∫ 4

0

9− 5x√
2x+ 1

dx =

∫ 3

1

9− 5 t2−1
2

t
tdt =

1

2

∫ 3

1
(23− 5t2)dt =

1
2 [23t|

3
1 − 5

3 t
3|31] = 1

2 [23(2)−
5(26)
3 ] = 23− 65

3 = 4
3 .

Hence, ∫ 4

0

9− 5x√
2x+ 1

dx =
4

3
.

P roblem 3. Find the value of the definite integral

∫ 1

0

(x+ 2)dx√
4 + 5x

.

Solution: We make a substitution 4 + 5x = u2 which means 5dx = 2udu and so

∫ 1

0

(x+ 2)dx√
4 + 5x

=
1

5

∫ 3

2

u2−4
5 + 2

u
2udu =

2

25

∫ 3

2
(u2 + 6)du =

= 2
25(

u3

3 |32 + 6u|32) = 2
25(

19
3 + 6) = 74

75 .

Hence

∫ 1

0

(x+ 2)dx√
4 + 5x

=
74

75

Problem 4. Find the value of the definite integral

∫ 8

0

3x− 2√
9 + 2x

dx.

4.4 Integration by parts

The idea of this technique is based on the product rule of differentiation from Calculus I: (fg)′ =
f ′g + fg′ where f and g are differentiable functions. We are mostly concerned with definite
integrals, so by FTC, we have

(4.3)

∫ b

a
f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x)g(x)dx.

Let us see the most standard applications of this formula.

Problem 1. Find the value of the definite integral

∫ π

0
x cosxdx.
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Solution: We can write the integral as

∫ π

0
x
d

dx
(sinx)dx and so, we can use the formula (4.3),

for f(x) = x and g(x) = sinx. We can continue,

∫ π

0
x
d

dx
(sinx)dx = f(x)g(x)|π0 −

∫ π

0

d

dx
(x)(sinx)dx⇒

∫ π

0
x cosxdx = cosx|π0 = −2 .

P roblem 2. Find the value of the definite integral

∫ e

1

lnx

x2
dx.

Solution: We can write the integral as

∫ e

1
(lnx)

d

dx
(−1

x
)dx and so, we can use the formula

(4.3), for f(x) = lnx and g(x) = − 1
x . We can continue,

∫ e

1

lnx

x2
dx = f(x)g(x)|e1 −

∫ e

1

d

dx
(lnx)(−1

x
)dx⇒

∫ e

1

lnx

x2
dx = −1

e
+

∫ e

1

1

x2
= (−1

x
)|e1 −

1

e
=

e− 2

e
≈ 0.264241118 .

4.4.1 Sample Final Exam and solutions

1. Find the first derivative of the functions:

(a) f(x) = (cos 2x)3(sin 3x)2 (b) g(x) =
√
x− x2

(c) h(x) = ln(x+
√
x2 + 1) (d) i(x) = e−2x sec(3x)− arctan(sinx)

(e)j(x) =
1 + x

(2− x)2
(f)k(x) = arcsin(x2)

Solution: (a) Using the product formula and the derivatives of sine and cosine, we get

f ′(x) = −6(cos 2x)2 sin 2x sin2 3x+ 6(cos 2x)3 sin 3x cos 3x .

(b) The derivative of g is

g′(x) =
1− 2x

2
√
x− x2

.

(c) We have seen, several times, that h′(x) =
1√

x2 + 1
.
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(d) The derivative is

i′(x) = −2e−2x sec(3x) + 3e−2x sec(3x) tan(3x)− cosx

1 + sin2 x
.

(e) Using the quotient rule and the product rule, we get

j′(x) =
(2− x)2 − (1 + x)2(2− x)(−1)

(2− x)4
=

2− x+ 2 + 2x

(2− x)3
or

j′(x) =
4 + x

(2− x)3
.

(f) Simply, he chain rule gives

k′(x) =
2x

1− x4
.

2. Compute an antiderivative of each of the following functions:

(a) f(x) =
x2 + 2x+ 3

(x+ 1)2
(b) g(x) = x sec2(x2 + 1)

(c) h(x) = 2x+1
x2−4

(d) i(x) =
1

1 + 4x2

Solution: (a) We observe that f(x) = x2+2x+1+2
(x+1)2

= 1 + 2
(x+1)2

. This implies that∫
f(x)dx = x− 2

x+ 1
+ C .

(b) Using the chain rule in reverse we see that

∫
g(x)dx =

1

2
tan(x2 + 1) + C .

(c) We write h(x) = 2x+1
(x−2)(x+2) =

1
4(

5
x−2 + 3

x+2) which gives∫
h(x)dx =

5

4
ln |x− 2|+ 3

4
ln |x+ 2|+ C .

(d) Using the chain rule in reverse we see that

∫
i(x)dx =

1

2
arctan(2x) + C .

3. Water is filling up a pool in the shape shown below, at a rate of 5 ft3/min. How fast is the
water level rising when it is 4 ft deep (at the deep end)?
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Figure 1

Solution: We refer to Figure 1 above. We need to find the volume of the water in terms of h
(the depth at the deep end). The formula is simply the volume of a prism, i.e., the area of the
trapezoid ABCD times the other dimension, which is 10 ft: V = Area(ABCD)10. From the
similarity of the triangles CEB and FGB, we get CE

FG = h
BG or CE = 10h

8 = 5h
4 . Then the area

of the trapezoid ABCD is A = (CD+AB)h
2 . Hence, the volume is

V = 10
[5h4 + 10 + 10]h

2
=

25

4
h(h+ 16) =

25

4
(h2 + 16h).

Differentiating, we obtain dV
dt = 25

4 (2h + 16)dhdt = 25
2 (h + 8)dhdt . Substituting h = 4 and

dV
dt = 5 gives

dh

dt
=

1

30
≈ 0.03 ft/min .

4. Calculate the definite integral I :=

∫ e

1
(x2 +

1

x2
) lnxdx.

Solution: Changing the variable x = es

I =

∫ 1

0
(e2s + e−2s)sesds =

∫ 1

0
(e3s + e−s)sds.

We use the formula we did in class and get

I = e3s(s/3− 1/9) + e−s(s/(−1)− 1/(−1)2)|10 ⇒

I =
2e3

9
− 2

e
+

10

9
.
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5. Fundamental Theorem of Calculus.

Solution: (i) Given a Riemman integrable function f on [a, b], with an antiderivative F , then∫ b
a f(x)dx = F (b)− F (a).

(ii) If f is continuous on [a, b] then F (x) =
∫ x
a f(t)dt has the property that F ′(x) = f(x)

for all x ∈ [a, b].

4.5 The logarithmic function

Let us define the logarithmic function by f(x) :=
∫ x
1

1
t dt, for all x > 0. First, we want to prove

that f(ab) = f(a) + f(b) for all a, b > 0. This can be accomplished by observing that

f(ab)− f(a) =

∫ ab

a

1

t
dt

t=as
=

∫ b

1

1

as
ads =

∫ b

1

1

s
ds = f(b),

which proves the essential identy which characterizes logarithmic functions. We observe that
f(1) = 0 and f ′(x) = 1

x by the Fundamental Theorem of Calculus. This implies that f ′(x) > 0
for all x. We conclude that f is a stritly increasing function on (0,∞). By the property we have
established f(2n) = nf(2) → ∞ and so we have limx→∞ f(x) = ∞, limx→0 f(x) = −∞ and
so f is a bijection from (0,∞) into (−∞,∞). Let us denote by e the solution of the equation
f(x) = 1. In other words, we have f(e) = 1. Consider now the inverse function of f and let us
denote that by g. Then g : (−∞,∞) → (0,∞) is a function with the following properties:

g(1) = e, g(0) = 1, g(x+ y) = g(x)g(y), x, y ∈ R.

If we set a = g(x) and b = g(y), we observe that f(ab) = f(a) + f(b) or g(x)g(y) = ab =
g(f(a) + f(b)) = g(x+ y) proving the above identity. This implies g(nx) = g(x)n for every real
number x and every natural number n. In particular is x = 1

n we obtain e = g(1) = g(1/n)n

or g(1/n) = e1/n. Also, if x = 1
m then g(n/m) = g(1/m)n = (e1/m)n = en/m so g(r) = er for

every positve rational number r. Hence, g(x) = ex for all x. In order to conclude that g is what
we consider to be the natural exponential function we have to prove that e = limn→∞(1 + 1

n)
n.

This is equivalent to f(e) = limn→∞ nf(1 + 1
n) or f(e) = limx→0

f(1+x)−f(1)
x = f ′(1) = 1.

This is correct by the definition of e. So, we conclude that f(x) = lnx and g(x) = ex where
e = limn→∞(1 + 1

n)
n ≈ 2.7182818284590452354.

4.6 The trigonometric functions

In this section we want to do something similar and build the trigonometric functions using
integration. Let us define first f(x) =

∫ x
0

1√
1−t2

dt for all x ∈ (−1, 1). We observe that f ′(x) =
1√

1−x2
> 0 if x ∈ (−1, 1) and so f is strictly increasing. The integral above for x = 1 is an

improper integral of second type which is convergent. Hence, f(1) is well-defined by
∫ 1
0

1√
1−t2

dt
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value which we will denote by a. Then f is a one-to-one map from [−1, 1] into [−a, a], and we
can call its inverse g. We observe that g′(x) = 1

f ′(g(x)) =
√

1− g(x)2 for all x ∈ (−a, a). We

can introduce h(x) =
√

1− g(x)2, for all x ∈ [−a, a]. This gives the usual Pythagorean identity
g(x)2 + h(x)2 = 1 if x ∈ [−a, a]. One may check easily that

∫ √
1− t2dt =

1

2
(x
√
1− x2 + f(x)) + C,

Which implies that

1

2
Area(Unit Disk) =

∫ 1

−1

√
1− t2dt =

π

2
= a =⇒ x =

π

2
.

Then h′(x) = − g(x)g′(x)√
1−g(x)2

= −g(x) for all x ∈ (−a, a). Then g′′(x) = h′(x) = −g(x), which

means g is a twice differentiable function satisfying g′′ + g = 0, g(0) = 0 and g′(x) = 1. There
is only one such function so g(x) = sin(x), x ∈ (−π

2 ,
π
2 ). We then have h(x) = cosx, and we

can extend these two function by symmetry first, g(a− x) = g(a+ x), and then by periodicity
g(x+ 4a) = g(x). One can prove the usual formulae

cos(x+ y) = cosx cos y − sinx sin y, x, y ∈ R,

sin(x+ y) = sinx cos y + cosx sin y, x, y ∈ R,

using the uniqueness of the solution of the differential equation u′′+u = 0 with initial conditions.
Once we have identified g and h we can construct easily the other trigonometric functions:
tanx = g(x)

h(x) defined for all x where h is not zero, cotx = g(x)
h(x) , x ̸= kπ, etc.

4.6.1 Integration formulae

Calculus

Integrals-II Derivatives-I

“Water lilies load all over,
The blue lake amid the woods,

That imparts, while in white circles
Startling, to a boat its moods.”

M. Eminescu
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Indefinite integrals Derivatives

1.
∫
[αf(x)± βg(x)]dx = α

∫
f(x)dx± β

∫
g(x)dx d

dx [αf(x)± βg(x)] = αf ′(x)± βg′(x), α, β constants

2.
∫
[f ′(x)g(x)]dx = f(x)g(x)−

∫
f(x)g′(x)dx (integration by parts) d

dx [f(x)g(x)] = f ′(x)g(x) + f(x)g′(x) product rule

d
dx

[
f(x)
g(x)

]
= f ′(x)g(x)−g′(x)f(x)

(g(x))2
quotient rule

3. for n ̸= −1,
∫
xndx = xn+1

n+1 + C,
∫

1
xdx = ln |x|+ C, d

dxx
n = nxn−1 (power rule)

4. b > 0,
∫
bx dx = bx

ln b + C d
dx(b

x) = bx ln b

d(ect)
dt = cect, d

dx(e
f(x)) = f ′(x)ef(x)

5.
∫
lnx dx = x lnx− x+ C d

dx(x lnx− x) = lnx

6. a ̸= 0,
∫
sin ax dx = − cos ax

a + C d
dx cos ax = −a sin ax

7. a ̸= 0,
∫
cos ax dx = sin ax

a + C d
dx sin ax = a cos a x

8.
∫
tan x dx = − ln | cos x|+ C d

dx tan x = sec2 x

9.
∫
cot x dx = ln | sin x|+ C d

dx cot x = − csc2 x

10.
∫
sec x dx = ln | secx+ tanx|+ C d

dx secx = secx tanx

11.
∫
cscxdx = − ln | cscx+ cotx|+ C d

dx cscx = − cscx cotx

12.
∫
sec2 x dx = tanx+ C d

dx ln f(x) =
f ′(x)
f(x)

13.
∫

1√
1−x2

dx = arcsin x+ C d
dx arcsinx = 1√

1−x2

14.
∫

1
1+x2dx = arctanx+ C d

dx arctan f(x) =
f ′(x)

1+f(x)2

15.
∫

1√
x2+1

dx = ln |x+
√
x2 + 1|+ C d

dx arccosx = − 1√
1−x2

16.
∫

1
x+a dx = ln |x+ a|+ C d

dx ln |f(x)| = −f ′(x)
f(x)
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Indefinite integrals important formulae

17.

∫
1√

x2 + a
dx = ln |x+

√
x2 + a|+ C

d

dx
arccos f(x) = − f ′(x)√

1− f(x)2

18.

∫
P (x)eaxdx = eax[

P (x)

a
− P ′(x)

a2
+
P ′′′(x)

a3
− ...] + C

19.

∫
P (x) cosxdx = [P (x)− P ′′(x) + P ′′′′(x)− ...] sinx+ [P ′(x)− P ′′′(x) + P ′′′′′(x)− ...] cosx+ C

20.

∫
P (x) sinxdx = [P ′(x)− P ′′′(x) + P ′′′′′(x)− ...] sinx− [P (x)− P ′′(x) + P ′′′′(x)− ...] cosx+ C

21.

∫
eax sin bxdx =

eax(a sin bx− b cos bx)

a2 + b2
+ C,

∫
eax cos bxdx =

eax(a cos bx+ b sin bx)

a2 + b2
+ C

Reduction Formulae

22.

∫
sinn xdx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 xdx, n ≥ 2.

23.

∫
cosn(x) dx =

1

n
(cos(x))n−1 sin(x) +

n− 1

n

∫
(cos(x))n−2 dx

24.

∫
secn xdx =

1

n− 1
secn−2 x tanx+

n− 2

n− 1

∫
secn−2 xdx, n ≥ 2.

25.

∫
tann xdx =

1

n− 1
tann−1 x−

∫
tann−2 xdx, n ≥ 2.

26.

∫
1

(x2 + a2)n
dx =

1

a2

(
1

2n− 2

x

(x2 + a2)n−1
+

2n− 3

2n− 2

∫
1

(x2 + a2)n−1
dx

)
, n ≥ 2.
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Some other important formulae

27.

∫ √
x2 + adx =

1

2
[x
√
x2 + a+ a ln(x+

√
x2 + a)] + C

28.

∫ √
R2 − x2dx =

1

2
[x
√
R2 − x2 +R2 arcsin

x

R
] + C

For the washer method, we have V = π
∫ b
a (r

2
out− r2in)dz where z is the variable on the axis

of rotation. For the shell method, we have V = 2π
∫ b
a D ·Ldz where z is the variable on the axis

perpendicular to the axis of rotation, D is the distance to the axis of the generic rectangle, and
L is its length. In the first case, the generic rectangle is perpendicular to the axis of rotation
and in the shell case, it is parallel. The two methods should give the same answer and they
can be applied both when the function involved can be easily inverted (the inverse can be easily
computed).

Change of Variable and Chain Rule

These two rules are interconnected. Let us assume that f is continuous on [a, b] and
φ : [c, d] → [a, b] is continuous, differentiable and a bijection.

29.

∫ b

a
f(x)dx =

∫ φ−1(b)

φ−1(a)
f(φ(u))φ′(u)du f(g(x))′ = f ′(g(x))g′(x)

Arc Length and Surface area

30. L =

∫ b

a

√
1 + f ′(x)2dx, S = 2π

∫ b

a
f(x)

√
1 + f ′(x)2dx (rotation around the x-axis))

31. S = 2π

∫ b

a
x
√
1 + f ′(x)2dx (rotation around the y-axis))

Important formulae for integration of rational functions
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32. (a > 0)

∫
du

u2 + a2
=

1

a
arctan(

x

a
) + C,

∫
udu

u2 + b
=

1

2
ln(x2 + b) + C

Various series and important identities

(4.4) Geometric Series :
∞∑
k=0

xk = 1 + x+ x2 + x3 + · · · = 1

1− x
= (1− x)−1 , |x| ≤ 1

(4.5)
∞∑
k=0

(−1)k
x2k+1

2k + 1
= x−x3

3 +
x5

5 −
x7

7 +. . . = arctan(x), |x| ≤ 1 =⇒ π

4
= 1−1

3+
1
5−

1
7+. . . (Leibniz)

(4.6)
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
= x− x3

3! +
x5

5! −
x7

7! + . . . = sinx, x ∈ R.

(4.7)
∞∑
k=0

(−1)k
x2k

(2k)!
= 1− x2

2! +
x4

4! −
x6

6! + . . . = cosx, x ∈ R.

Series can be integrated term by term. So, integrating (4.4) after changing x into −x, we
obtain

(4.8)
∞∑
k=0

(−1)k
xk+1

k + 1
= x−x2

2 +
x3

3 −
x4

4 +. . . = ln (1 + x) =⇒ ln 2 = 1−1
2+

1
3−

1
4+. . . (AlternatingHarmonic Series)

The same idea can be used to obtain (4.5), integrating (4.4) after changing x into −x2.

(4.9)
∞∑
k=0

(
α

k

)
xk = 1 + αx+ α(α−1)

2! x2 + α(α−1)(α−2)
3! x3 + . . . = (1 + x)α, |x| < 1. (Newton′s formula)

4.6.2 Sample Final

1. Show that the function f(x) = 1−
√
1− x has the following Taylor expansion around x = 0:
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f(x) =
∞∑
n=1

(
2n
n

)
xn

4n(2n− 1)
.

Remember that
(
n
m

)
= (n)!

(n−m)!·m!

Solution: We use the formula for the coefficients in the Taylor expansion around x = 0:

(4.10) f(x) = f(0) +
∞∑
k

f (k)(0)xk

k!
.

Clearly, f(0) = 0. Then, we have f ′(x) = −1
2(1− x)−

1
2 (1− x)′ = 1

2(1− x)−
1
2 and so f ′(0) = 1

2 .

Then, the second derivative is f ′′(x) = 1
4(1 − x)−

3
2 and so f ′′(0) = 1

4 . For the third derivative

f ′′′(x) = 1·3
23
(1− x)−

5
2 , and can see the pattern:

f (k)(x) =
1 · 3 · 5 . . . (2k − 3)

2k
(1− x)−

(2k−1)
2 =⇒ f (k)(0) =

1 · 3 · 5 . . . (2k − 3)

2k
or

f (k)(0) =
1 · 3 · 5 . . . (2k − 3)

2k
· 2 · 4 · 6 . . . (2k − 2)(2k)

2k1 · 2 · 3 . . . (k − 1)k
=

(2k)!

4kk!(2k − 1)
.

Then, by (4.10) we obtain

f(x) =
∞∑
k=1

f (k)(0)xk

k!
=

∞∑
k

(2k)!xk

4k(2k − 1)k!k!
=

∞∑
k=1

(
2k
k

)
xk

4k(2k − 1)
.

2. Compute the sum of the series
∞∑
n=3

1

n(n2 − 4)
.

Solution: We use partial fractions to write

1

n(n2 − 4)
=
A

n
+

B

n− 2
+

C

n+ 2
,

and after a little thought A = −1
4 , B = C = 1

8 . Let’s write this as a telescoping sum

1

n(n2 − 4)
=

1

8

[( 1

n− 2
− 1

n

)
−
( 1
n
− 1

n+ 2

)]
.
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Giving values to n we have

m∑
n=3

1

n(n2 − 4)
=

1

8

[ m∑
n=3

[( 1

n− 2
− 1

n

)
−

m∑
n=3

[( 1
n
− 1

n+ 2

)]
=

1

8

[(
1 +

1

2
− 1

m− 1
− 1

m

)
−
(1
3
+

1

4
− 1

m+ 1
− 1

m+ 2

)]
→

1

8

[(
1 +

1

2

)
−
(1
3
+

1

4

)]
=

1

8
· 11
12

=
11

96
.

Therefore, we obtain
∞∑
n=3

1

n(n2 − 4)
=

11

96
.

3. Use integration by parts to find reduction formulae for

In =

∫ ∞

0
e−xxn sinxdx, Jn =

∫ ∞

0
e−xxn cosxdx.

Use these reduction formulae to find I3 and J3.

Solution: Let us take the derivative of e−x(sinx+ cosx):

[e−x(sinx+ cosx)]′ = −e−x(sinx+ cosx) + e−x(cosx− sinx) = −2e−x sinx.

This means integration by parts gives for n ≥ 1:

In =

∫ ∞

0
[−1

2
e−x(sinx+cosx)]′xndx =

1

2
[−e−x(sinx+cosx)]xn|∞0 +

1

2

∫ ∞

0
e−x(sinx+cosx)(nxn−1)dx =

=
n

2
[

∫ ∞

0
e−x(xn−1) sinxdx+

∫ ∞

0
e−x(xn−1) cosxdx] =

n

2
(In−1 + Jn−1) .

Let us take the derivative of e−x(sinx− cosx):

[e−x(sinx− cosx)]′ = −e−x(sinx− cosx) + e−x(cosx+ sinx) = 2e−x cosx.

This means integration by parts gives for n ≥ 1:

Jn =

∫ ∞

0
[−1

2
e−x(sinx−cosx)]xndx =

1

2
[e−x(sinx−cosx)]′xn|∞0 −1

2

∫ ∞

0
e−x(sinx−cosx)(nxn−1)dx =

=
n

2
[

∫ ∞

0
e−x(xn−1) cosxdx−

∫ ∞

0
e−x(xn−1) sinxdx] =

n

2
(Jn−1 − Jn−1).
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The antiderivatives we found give

I0 =
1

2
[−e−x(sinx+ cosx)]|∞0 =

1

2
and

J0 =
1

2
[e−x(sinx− cosx)]|∞0 =

1

2
.

Then, we get

I1 =
1

2
(I0 + J0) =

1

2
and J1 =

1

2
(J0 − I0) = 0.

Next, we have

I2 =
2

2
(I1 + J1) =

1

2
and J2 =

1

2
(J1 − I1) = −1

2
.

Finally, we see that

I3 =
3

2
(I2 + J2) = 0 and J2 =

3

2
(J2 − I2) = −3

2
.

4. Use partial fractions to calculate

∫ ∞

1

x+ 1

x3 + 9x
dx.

Solution: The identity
x+ 1

x3 + 9x
=

x+ 1

x(x2 + 9)
=
A

x
+
Bx+ C

x2 + 9
leads to A = 1

9 and B = −1
9 ,

C = 1. Hence

∫ ∞

1

x+ 1

x3 + 9x
dx = lim

t→∞
[
1

9
ln t− 1

18
(ln(t2 + 9)− ln(10)) +

1

3
arctan(

t

3
)− 1

3
arctan(

1

3
)] =

lim
t→∞

[
1

18
ln

t2

t2 + 9
+

ln 10

18
+

1

3
arctan(

t

3
)− 1

3
arctan(

1

3
)]

Since limt→∞ ln t2

t2+9
= 0 we obtain

∫ ∞

1

x+ 1

x3 + 9x
dx =

π

6
+

ln 10

18
− 1

3
arctan(

1

3
) ≈ 0.5442699850.

5. Compute the volume of the solid generated by revolving the region bounded by y = 1− x and
y = 3x − 3x2 around the vertical line x = 1

3 . Use only one method. For the other method just
set up the integral but do not evaluate it.
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0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

Problem5, Graphs of y=1−x, y=3x−3x2

Solution: The intersection of the given graphs is determined by the equation 1− x = 3x− 3x2

or 3x2 − 4x + 1 = 0. This quadratic can be easily factored: (3x − 1)(x − 1) = 0 which means
x = 1/3 or x = 1. Using the shell method we have

V = 2π

∫ 1

1/3
(x− 1

3
)(4x− 3x2 − 1)dx =

2π

3

∫ 1

1/3
(3x− 1)(3x− 1)(1− x)dx

If we change the variable 3x− 1 = u (3dx = du), so we get

V =
2π

3

∫ 2

0
u2(1− u+ 1

3
)
du

3
=

2π

27

∫ 2

0
(2u2 − u3)du =

2π

27
(
2u3

3
− u4

4
)|20 =

8π

81
.

To use the other method, first, we need to solve the given equation y = 3x − 3x2 for x. If we
divide by 3 and multiply by −4, we can complete the square easily: 4x2 − 4x+ 1 = 1− 4y

3 . We

get two solutions x1 =
1
2

(
1 +

√
1− 4y

3

)
or x2 =

1
2

(
1−

√
1− 4y

3

)
. We need to split the integral

into two:

V = π

∫ 2/3

0

[
1

2

(
1 +

√
1− 4y

3

)
− 1

3

]2
−
[
(1− y)− 1

3

]2
dy+

π

∫ 3/4

2/3

[
1

2

(
1 +

√
1− 4y

3

)
− 1

3

]2
−
[
1

2

(
1−

√
1− 4y

3

)
− 1

3

]2
dy.

If we evaluate this in Mathematica we get the same answer.

6. (a) Show that the series
∞∑
n=0

(−1)n(n+ 1)

n2 + 1
is conditionally convergent.

(a) Use the comparison test idea to prove that

∞∑
n=0

(−1)n(n+ 1)

n2 + 1
< ln 2− 3

10
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Solution: (a) We have to show that the series is convergent but it is not absolutely convergent.

If we look at
∞∑
n=0

(n+ 1)

n2 + 1
, we can use the comparison test with

∞∑
n=0

1

n+ 1
, which is the Harmonic

series and so divergent. Then our series is not absolutely convergent. The series is convergent
by the alternating series test. We need to show that the general term is decreasing to zero for
n big enough. Let’s see what it means to have (n+1)

n2+1
> (n+2)

n2+2n+2
or

n3 + 2n2 + 2n+ n2 + 2n+ 2 > n3 + 2n2 + n+ 2 ⇐⇒ n2 + 3n > 0,

which is clearly true for all n > 0 and equality for n = 0. The sequence (n+1)
n2+1

is convergent to
zero by the rule on the degree of the polynomials top and bottom.

(b) Let us denote by s the sum of our series. We have

s = 1− 1 +

∞∑
n=2

(−1)n(n+ 1)

n2 + 1
=

3

5
− 4

10
+

∞∑
n=4

(−1)n(n+ 1)

n2 + 1
=

1

5
+

∞∑
k=2

2k + 1

4k2 + 1
− 2k + 2

(2k + 1)2 + 1
.

Let us show that

2k + 1

4k2 + 1
− 2k + 2

(2k + 1)2 + 1
<

1

2k − 1
− 1

2k
⇐⇒ 2

2k(4k2 + 4k + 2)
<

2

(4k2 + 1)(2k − 1)
⇐⇒

8k3 + 2k − 4k2 − 1 < 8k2 + 8k2 + 4k ⇐⇒ 12k2 + 2k + 1 > 0,

which is clearly true for all k ≥ 0. Hence, we get

s <
1

5
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . .

But we know that 1− 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + . . . = ln 2. Therefore, we get that

s < ln 2 +
1

5
− 1

2
= ln 2− 3

10
.

7. Find the value of
∞∑
k=0

1

16k(4k + 1)
.

Solution: Let us denote by s the sum required. we observe that

s =
∞∑
k=0

1

24k(4k + 1)
= f(1/2),

where f(x) =
∑∞

k=0
x4k

4k+1 . This suggests that we need to calculate the sum
∑∞

k=0 x
4k and inte-

grate that:

xf(x) =

∫ x

0

∞∑
k=0

t4kdt.
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By the sum of the geometric series, we have
∑∞

k=0 t
4k = 1

1−t4
, so

xf(x) =

∫ x

0

dt

1− t4
=⇒ 1

2
f(

1

2
) =

∫ 1
2

0

dt

1− t4
.

We observe that

1

1− t4
=

1

2
(

1

1− t2
+

1

1 + t2
) =

1

4
(

1

1− t
+

1

1 + t
) +

1

2
· 1

1 + t2
,

or this can be obtained by the cover-up method. Then, we integrate and get∫ 1
2

0

dt

1− t4
=

1

4
ln

1 + t

1− t
|
1
2
0 +

1

2
arctan t|

1
2
0 =

1

4
ln 3 +

1

2
arctan

1

2
.

This means that

s =
ln 3

2
+ arctan

1

2
≈ 1.012953753.
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Chapter 5

Parametric Equations

Quotation:

“One of the greatest minds of all times!” Norman John Wildberger
www.youtube.com/user/njwildberger

5.1 Some classical parametrizations

The most elementary curves that are at the heart of Euclidean geometry are clearly lines and
circles. For a line in the plane, the so-called standard form equation is given by

97
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(5.1) ax+ by + c = 0

where either a or b is not equal to zero. Let us assume that we have a point on this line, say
P (x0, y0). Then, a classical parametrization of the line (5.1) is given by

(5.2)

{
x = x0 + bt

y = y0 − at, t ∈ R.

One can easily see that substituting x and y, given by (5.2), into (5.1), results in the equality
ax0 + by0 + c = 0 which is assumed to be true.

In practice, we often need to write the equation of a line determined by two distinct points,
say A(xA, yA) and B(xB, yB). A nice and convenient way to write such an equation is to employ
the conventional linear algebra approach (using determinants):

(5.3)

∣∣∣∣∣∣
x y 1
xA yA 1
xB yB 1

∣∣∣∣∣∣ = 0 ⇔ (yA − yB)x− (xA − xB)y + (xAyB − xByA) = 0.

We can see that A and B are points on this line, either by an algebra exercise or by
recalling some properties of determinants (a determinant with two identical rows is zero). We
also have that a determinant whose row is a linear combination of the others is equal to zero
too. Hence, the next parametrization comes naturally

(5.4)

{
x = (1− t)xA + txB

y = (1− t)yA + tyB, t ∈ R.

This parametrization has the advantage that for t = 0 we obtain the point A and for t = 1 we
end up at B. Moreover, every point on the segment AB is given by a value of the parameter
t ∈ [0, 1], and vice versa.

Suppose we have two other points, C(xC , yC) and D(xD, yD). How do we determine the
intersection of AB and CD? Of course, assuming that the two segments are not parallel, we
can simply plug into the equation of CD the parametrization (5.4)

(5.5)

∣∣∣∣∣∣
(1− t)xA + txB (1− t)yA + tyB 1− t+ t

xC yC 1
xD yD 1

∣∣∣∣∣∣ = 0

and solve for t:
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(5.6) t = ti =

∣∣∣∣∣∣
xA yA 1
xC yC 1
xD yD 1

∣∣∣∣∣∣∣∣∣∣∣∣
xA − xB yA − yB 0
xC yC 1
xD yD 1

∣∣∣∣∣∣
,

which exists precisely when

∣∣∣∣∣∣
xA − xB yA − yB 0
xC yC 1
xD yD 1

∣∣∣∣∣∣ ̸= 0.

Problem 1

Use this information to prove Menlaus’ Theorem and Ceva’s Theorem.

The standard parametrization of the unit circle:

(5.7)

{
x = cos t

y = sin t, t ∈ [0, 2π).

Problem 2

A cow is tied to a silo with radius by a rope just long enough to reach the opposite

side of the silo (cylinder of radius r). Find the area available for grazing by

the cow.
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Figure 1

Solution: The cow is going to graze an area that is the inside of the curve depicted in Figure 1,
which is formed by an involute and a semicircle, minus the area of the circle of radius r (the
inside of the silo). We are going to choose the axes as in Figure 1 above. So, the parametrization
of the curve that is to the right of the y-axis (the involute) is given by

x(t) = r + r(cos t+ t sin t)

y(t) = r(sin t− t cos t),

t ∈ [−π, π],

and the part to the left is a semicircle or radius πr centered at the origin. We observe that the
involute is a curve explicit with respect to y and so we can use the formula for area given by∫ πr

−πr
xdy.

Then, the area grazed is given by

A =
(πr)2π

2
+

∫ π

−π
x(t)y′(t)dt− πr2.

Since y′(t) = r(cos t− cos t+ t sin t) = rt sin t we see that the integral we have to compute equals

I =

∫ π

−π
x(t)y′(t)dt = r2

∫ π

−π
(1 + cos t+ t sin t)t sin tdt = r2

∫ π

−π
(t sin t+ t sin t cos t+ t2 sin2 t)dt.

So, let us compute first (by parts)

I1 =

∫ π

−π
(t sin t)dt = t(− cos t)|π−π +

∫ π

−π
(cos t)dt = π − (−π) = 2π.
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Then the second (also by parts) is

I2 =

∫ π

−π
(t sin t cos t)dt =

1

2

∫ π

−π
(t sin 2t)dt =

1

2
[t(−cos 2t

2
)|π−π +

∫ π

−π

cos 2t

2
dt] = −π

2
.

Finally the last integral is given by

I3 =

∫ π

−π
(t2 sin2 tdt =

1

2

∫ π

−π
t2(1− cos 2t)dt =

1

2
[
t3

3
|π−π −

∫ π

−π
t2 cos 2tdt] ⇒

I3 =
1

2
[2
π3

3
− t2

sin 2t

2
|π−π +

∫ π

−π
2t
sin 2t

2
dt] =

π3

3
− π

2
.

Therefore, the area A is

A = r2(
π3

2
+
π3

3
+ 2π − π

2
− π

2
)− πr2 =

5π3r2

6
. □

5.2 Curves in space, Curvature and TNB-frame

Quotation:

“Read Euler, read Euler, he is the master of us all!” Pierre-Simon Laplce
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Suppose the curve is given parametrically by r(t) = [f(t), g(t), h(t)]. The derivative of
r is r′(t) = [f ′(t), g′(t), h′(t)] and the length of the curve between point A = r(t0) and point
B = r(t) is given by

s(t) =

∫ t

t0

|r′(u)|du =

∫ t

t0

√
f ′(u)2 + g′(u)2 + h′(t)2du.

As an example, let’s compute the length of a helix with parametric equations r = [r cos t, r sin t, ht],
for t ∈ [0, 2π]:

L =

∫ 2π

0

√
r2 + h2du = 2π

√
r2 + h2.

The unit tangent vector is defined by

T (t) =
r′(t)

|r′(t)|

provided r′(t) ̸= 0 (a smooth curve). The curvature is defined intrinsically in terms of the
arc-length parametrization

(5.8) κ = |T (s)
ds

| ⇒ κ =
|r′ × r′′|
|r′|3

.

Indeed, ds
dt = |r′| and since r′ = |r′(t)|T (t) = ds

dtT (t) if we differentiate again we get

r′′ = d2s
dt2
T (t) + ds

dtT
′(t). Then taking the cross product with r′ implies

r′ × r′′ = (
ds

dt
)2T (t)× T ′(t) = |r′|2T (t)× T ′(t).

Hence, we have |r′ × r′| = |r′|2|T (t)× T ′(t)| = |r′|2|T ′(t)| becasue T is a unit vector and T and
T ′ are perpendicular. Therefore, we have

k = |T (s)
ds

| = |T ′|
|r′|

=
|r′ × r′′|
|r′|3

.
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By definition N = T ′

|T ′| the derivative being taken with respect to t (the parameter). Using
chain rule

T ′ =
dT

dt
=
dT

ds

ds

dt
= |r′|dT

ds
.

Hence, we obtain
dT

ds
=

T ′

|r′|
=

|T ′

|r′|
|N = κN ⇒

(5.9)
dT

ds
= κN.

Let us see a nice corollary of (5.9). Suppose that a unit vector u is fixed in space and let
φ be the angle that T makes with u, and ψ be the angle that N makes with u. Then we have

(5.10) κ = |dφ
ds

sinφ

cosψ
|,

which reduces to κ = |dφds | for a plane curve and u a unit vector in that plane. This can be
derived in the following way: first differentiate cosφ = T · u with respect to s. Since u is fixed,
we get

(− sinφ)
dφ

ds
=
dT

ds
· u = κN · u = κ cosψ,

which gives (5.10).

5.2.1 Problem 66, page 862, Stewart ([8])

We formulated this problem more like a “conjecture”, and in a little more general setting:
consider the class F of all C2([0, 1]) functions f with the property f(0) = f ′(0) = f ′′(0) = 0 and
f(1)− 1 = f ′(1) = f ′′(1) = 0. We can think of the graph of y = f(x) as a transfer path between
two parallel and horizontal railroads, one arriving at (0,0) and one starting at (1,1).

Such a function in F is the polynomial P (x) = 6x5−15x4+10x3 and the (absolute value)

maximum curvature of P (the general the formula for the curvature is kf (x) = |f ′′(x)|
(1+f ′(x)2)

3
2
) is

a little over 4. There are other simple functions in F with lower maximum curvature (and it
is perhaps a good exercise in Calculus III courses, to try to find others, since there are infinite
families in F that one can come up with).

For example, the piece-wise polynomial,

Q(x) =

{
8x3(1− x), x ∈ [0, 12 ],

1− 8(1− x)3x, x ∈ [12 , 1],

is in F , and it has a maximum curvature which is below 4.

Question: Is it true that

m := inf
f∈F

(
max
x∈[0,1]

|kf (x)|
)

= 2?

https://math.stackexchange.com/questions/2693801/plane-curves-of-bounded-curvature
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One can use two quarter circles of radius 1/2 and construct a path connecting the two
points. The path is not quite what is required, but perhaps it can be “fixed”, and that will give
m ≤ 2. The other part seems to be more difficult to prove. In other words, if the curvature
is less than 2, then one cannot connect those points with a curve y = f(x). If one drops this
requirement and asks only for a curve in the plane, I assume the answer is m = 0.

The following function, which appears from the calculation of the (normalized) area of the
segment of a circle of radius 1

2 in terms of its height x (there is a small change of a constant in
the middle though),

f(x) = [arccos(1− 2x) + (1− 2x)(x− x2)
1
2 ]/π, x ∈ [0, 1]

has an inverse. Taking g = f−1, one can check that g ∈ F and its maximum curvature, which
is below 2.33. The following solution to this problem was given by a user of Stack Exchange
(achilles hui).

Let us include a sketch of these arguments. We will show first that m ≥ 2. We look at
the graph of f as a path in R2:

γ(t) = (x(t), y(t)) = (t, f(t)) ∈ R2, t ∈ [0, 1].

Let’ s use the parametrization of γ by its arc-length measured from (0, 0), s(t) =
∫ t
0

√
1 + f ′(x)2dx,

t ∈ [0, 1]. As usual, we denote by θ = θ(t) the angle between the tangent vector to γ at γ(t) and
the x-axis. We have then

(cos θ, sin θ) =

(
dx

ds
,
dy

ds

)
=

(
1√

1 + f ′2
,

f ′√
1 + f ′2

)
.

Let Mf be the maximum of the absolute value of dθ
ds . It is well known that the curvature kf (t)

can be also obtained from θ: kf =
∣∣dθ
ds

∣∣. We have then

M =Mf = max
t∈[0,1]

∣∣∣∣dθds
∣∣∣∣ = max

t∈[0,1]

∣∣∣∣ f ′′(t)

(1 + f ′(t)2)3/2

∣∣∣∣ .
By way of contradiction, let us assume that for some function f ∈ F , we have M < 2. Since
f ′(0) = 0, we see that θ(0) = 0, and so∣∣∣∣dθds

∣∣∣∣ ≤M =⇒ |θ(s)| =
∣∣∣∣∫ s

0

dθ

du
du

∣∣∣∣ ≤ ∫ s

0
kf (u)du =Ms

As long as s ≤ π
2M , we obtain

cos θ(s) ≥ cos(Ms) and | sin θ(s)| ≤ sin(Ms)

Since x(0) = y(0) = 0, this leads to

(5.11) x(s) =

∫ s

0
cos θ(τ)dτ ≥

∫ s

0
cos(Mτ)dτ =

sin(Ms)

M
, and
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(5.12) |y(s)| =
∣∣∣∣∫ s

0
sin θ(τ)dτ

∣∣∣∣ ≤ ∫ s

0
sin(Mτ)dτ =

1− cos(Ms)

M
.

Because M < 2, we have 1
M > 1

2 . The inequality above tells us that x(s) will reach 1
2 at

some s = s∗ <
π

2M . Together with (5.12), we find

f

(
1

2

)
= y(s∗) ≤

1− cos(Ms∗)

M
=

1−
√

1− sin(Ms∗)2

M
≤

1−
√
1− (Mx(s∗))2

M
=

2−
√
4−M2

2M

We observe that

(M +
√
4−M2)2 = 4 + 2M

√
4−M2 > 4 =⇒ M +

√
4−M2 > 2.

Hence, we find that

f

(
1

2

)
≤ 2−

√
4−M2

2M
<

1

2
.

Now, instead of parameterize γ using arc-length measured from (0, 0), we can parameterize
γ using arc-length measured from (1, 1). Using essentially the same argument as above but on
the portion of γ at x ≥ 1

2 , we can show that whenM < 2, f(12) >
1
2 . From this, we can conclude

it is impossible for |dθds | < 2 over the whole path. In other words, we have shown that

m = inf
f∈F

Mf ≥ 2.

About the actual value of m, we show next that it should be 2. Let us consider the following
curve consisting of two quarter circular arcs: one centered at (0, 12) with radius 1

2 joining (0, 0)
to (12 ,

1
2). In addition, we continue with another arc centered at (1, 12) with radius 1

2 joining
(12 ,

1
2) to (1, 1).

This curve is close to giving us the f that we want. Aside from the point (12 ,
1
2), we have∣∣dθ

ds

∣∣ = 2. This curve does have some minor problems. First, one can check that f ′′(0) = 2 and
f ′′(1) = −2 and so both are not equal to 0. Also, f ′ is not defined at 1

2 and hence f fails to
belong to C2([0, 1]). However, it is not that hard to modify f to force f ′′(0) and f ′′(1) to vanish.
If one relaxes the bound for

∣∣dθ
ds

∣∣ near x = 0 and x = 1 a little bit, one has enough freedom to
smooth out the singularity of f ′ at (12 ,

1
2). This suggests that one can construct a f ∈ C2([0, 1])

with Mf as close to 2 as one desires. We observe that on the small interval where the function
needs to be modified, the same type of problem applies (with more general constraints in terms
of the derivatives), and we have polynomials that can help with this task.

We may ask similar questions at this point. What is the smallest curvature if F is modified
in the following way

the class Fδ of all C2([0, 1]) functions f with the property f(0) = f ′(0) = f ′′(0) = 0,
f(1) = 1, f ′(1) = δ ∈ R, and f ′′(1) = 0?

For δ = tanu, u ∈ [0, π2 ), show that the minimum curvature in this case is given by

mδ = h(u ) =
1

2

(
cosu− sinu+ 1 +

√
8− 2(sinu+ 1)(cosu+ 1)

)
.
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Chapter 6

Differential Equations and Kepler’s
Laws

I can wait 100 years for a reader, the Lord God also had to wait
6,000 years for the discoverer of his works. Johannes Kepler

6.0.1 A non-linear classical example: Kepler’s laws of planetary motion

After analyzing observations of Tycho Brache, Johannes Kepler arrived to the following laws of
planetary motion:

1. The orbits of planets are ellipses (with the sun in one of the foci).

2. The planets move in such a way on the orbit, that their corresponding ray wipes out an area
that varies at a constant rate.

3. The square of the planet’s period of revolution is proportional to the cube of the major semi-
axis of the elliptical orbit.

We are going to make an assumption here which is not very far from what it happens in
the reality (neglect the influence of the planet in question on the sun). The sun contains more
than 99% of the mass in the solar system, so the influence of the planets on the sun could be,
on a first analysis, neglected. Intuitively it is not hard to believe that the planet X is moving in
a fixed plane although this is also a consequence of the movement under the gravitational field.
Let us take the origin of the coordinates in this plane centered at the sun.

The position vector corresponding to the planet X is denoted here by
→
r = x(t)

→
i + y(t)

→
j

where
→
i = (1, 0) and

→
j = (0, 1). The distance between the sun and the planet X is r =√

x(t)2 + y(t)2. According to Newton’s law the planet X moves under the action of a force that
is inverse proportional to the square of the distance r. The law can be written as a differential
equation in the following way:

(6.1)
→
r
′′
= −k

→
r

r3
.

We are going to derive Kepler’s laws from (6.1). First let us observe that (6.1) is just the vectorial

107
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form of the following second-order non-linear autonomous system of differential equations:

(6.2)


x′′ = −k x

(x2 + y2)3/2

y′′ = −k y

(x2 + y2)3/2
.

It is really a significant fact that this can be reduced to a differential equation that we know how
to solve. To see this, let us first introduce polar coordinates, by assuming that the trajectory
is written in polar coordinates, r = r(θ), and we consider two unit vectors that will help us
simplify the calculations:

→
u = cos θ

→
i + sin θ

→
j

and
→
v = − sin θ

→
i + cos θ

→
j .

It is easy to check that
→
u ·→v = 0, and these two vectors clearly depend of time because θ

is. Differentiating these two vectors with respect to time we get

(6.3)

d
→
u
dt = (− sin θ

→
i + cos θ

→
j )dθdt =

→
v dθ

dt
and

d
→
v
dt = (− cos θ

→
i − sin θ

→
j )dθdt = −→

u dθ
dt .

Since
→
r = r

→
u after differentiating this equality, we obtain

d
→
r

dt
= r′

→
u + r

d
→
u

dt
= r′

→
u + r

→
v
dθ

dt
.

Differentiating one more time and using (6.3) we get:

d2
→
r

dt2
= r′′

→
u + 2r′

→
v
dθ

dt
− r

→
u

(
dθ

dt

)2

+ r
→
v
d2θ

dt2

or
d2

→
r

dt2
=

(
r′′ − r

(
dθ

dt

)2
)

→
u +

(
2r′

dθ

dt
+ r

d2θ

dt2

)
→
v = −k

→
u

r2
.

Identifying the coefficients of
→
u and

→
v in the above relation we obtain

(6.4)

{
r′′ − r

(
dθ
dt

)2
= − k

r2

2r′ dθdt + r d
2θ
dt2

= 0.

The second relation in (6.4) is equivalent to d
dt(r

2 dθ
dt ) = 0 (r ̸= 0). This means r2 dθdt = h for

some constant h. This proves the second Kepler’s law since

dA

dt
=
dA

dθ

dθ

dt
=

[
lim

∆θ→0

r(θ +∆θ)r(θ) sin(∆θ)

2∆θ

]
dθ

dt
=

1

2
r2
dθ

dt
=
h

2
.
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The first equation in (6.4) can be transformed using the substitution r =
1

z
and changing

the independent variable to θ instead of t:
dr

dt
= − 1

z2
dz

dθ

dθ

dt
= −hdz

dθ
and then

d2r

dt2
= −hd

2z

dθ2
dθ

dt
=

−h2z2d
2z

dθ2
which gives

−h2z2d
2z

dθ2
− 1

z
h2z4 = −kz2.

Equivalently, this can be written as

(6.5)
d2z

dθ2
+ z =

k

h2
.

As we have seen the general solution of this is z = A cos θ+B sin θ+ k
h2 = k

h2 (1+e cos(θ−α))
where e = h2

k

√
A2 +B2, cosα = A√

A2+B2
and sinα = B√

A2+B2
. This gives

(6.6) r =
L

1 + e cos(θ − α)
.

which represents an ellipse if the eccentricity e satisfies 0 ≤ e < 1, a parabola if e = 1 or
a hyperbola if e > 1. Since the orbits of the planets are bounded it must be the case that
e < 1. Comets, by definition, are having parabolic or hyperbolic orbits. [So, according to this
definition, Halley’s comet is actually not a comet.] This proves the first Kepler’s law.

To derive the third Kepler’s law, let us integrate the area formula dA
dt = h/2 over the

interval [0, T ], where T is the period of the orbit. Then we get hT/2 = Area(Ellipse), but
the area of an ellipse is equal to πab, where a and b are the two semiaxes. The big axis is
a = ( L

1+e +
L

1−e)/2 = L
1−e2

and b = L√
1−e2

. This means that h2T 2

4 = π2L4

(1−e2)3
. From here we see

that

T 2 =
4π2L

h2
a3 =

4π2

k
a3

or

T 2

a3
=

4π

k
= constant,

which is the third Kepler’s law.

Joke T ime!
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Break for a short shot!



Chapter 7

Inequalities

“All analysts spend half their time hunting

through the literature for inequalities which
they want to use and cannot prove.” - G.H.

Hardy

Let us start with the classical inequality of Bernoulli:

(7.1) (1 + x)n ≥ 1 + nx, n ∈ N, x > −1.

We are going to use induction for this. For n = 1, the inequality (7.1) is trivial. Assuming
that (1 + x)n ≥ 1 + nx we multiply by (1 + x) > 0 and get (1 + x)n+1 ≥ (1 + nx)(1 + x) =
1+(n+1)x+nx2 ≥ 1+(n+1)x since nx2 ≥ 0. Then, we conclude that (1+x)n+1 ≥ 1+(n+1)x
which ends the inductive step. Therefore by PMI, (7.1) is true for all n ∈ N.

Theorem 7.0.1. [Mediant Inequality -Farey fractions] Given four positive real numbers a,
b, c and d such that a

b <
c
d then a

b <
a+c
b+d <

c
d .

The proof of it is simply algebra. We observe that D = c
d − a

b = bc−ad
bd and by hypothesis
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D > 0. Then, we have

a+ c

b+ d
− a

b
=
ab+ bc− (ab+ ad)

b(b+ d)
=
bc− ad

b(b+ d)
= D

d

b+ d
> 0 and

c

d
− a+ c

b+ d
=
bc+ dc− (ad+ dc)

d(b+ d)
=
bc− ad

b(b+ d)
= D

b

b+ d
> 0.

This shows the inequality but also something more, which is an estimate of the distance of a+c
b+d

relative to the endpoints of the interval (ab ,
c
d).

Remark: If we apply this construction several times and start with rational numbers, this gives
a simple way of constructing more rational points inside of that interval. Of course, one can
accomplish that same thing with regular averaging: u < v implies u < u+v

2 < v.

Some less standard application of the induction principle is the following proof of AM-GM-
inequality (arithmetic mean-geometric mean inequality). We need to show that given a1, a2,
...,an non-negative numbers we have

(7.2)
1

n

n∑
i=1

ai ≥ (
n∏

i=1

ai)
1/n.

First let us observe that we can assume that the numbers are strictly positive (if one of the
numbers is zero, the right hand side of (7.2) is zero). Without loss of generality, we may assume
that

∏n
i=1 ai = 1. Indeed, if the product is not equal to one but say P , we can reduce to this

situation by emplying the substitution bi = ai/P
1/n, i = 1, 2, ..., n.

For the Basis Step, we need to prove that (1/2)(a + b) ≥ 1 if ab = 1. This is true since
we can write (1/2)(a + b) ≥ 1 as (

√
a −

√
b)2 ≥ 0. For the Inductive Step, we assume that for

n positive numbers {ai} whose product is 1, we have a1 + a2 + ... + an ≥ n. We need to show
that given n+ 1 positive numbers bj , whose product is 1, then b1 + b2 + ...+ bn + bn+1 ≥ n+ 1.

We know that b1b2...bnbn+1 = 1. We notice that not all these numbers can be greater than
1. Otherwise the product is strictly greater than one. Hence, there exists bi ≤ 1. Similarly,
not all the b′s can be less than 1. Thus, there exists bj (i ̸= j) such that bj ≥ 1. Without
loss of generality, we may assume that i and j are 1 and 2. By the induction hypothesis,
b1b2 + b3 + ... + bn+1 ≥ n. Now, let us observe that b1 + b2 ≥ b1b2 + 1 is equivalent to 0 ≥
(b1 − 1)(b2 − 1) (true by our assumption on b1 and b2). Therefore,

b1 + b2 + b3 + ...+ bn+1 ≥ b1b2 + 1 + b3 + ...+ bn+1 ≥ n+ 1,

which finishes the Induction Step. Hence by PMI, we must have (7.2) true for every n non-
negative numbers.

Remark: It is important to observe that equality in (7.2) happens only if all numbers are equal.
This is indeed the case if n = 2 since (

√
a−

√
b)2 = 0 implies a = b. If n > 2, let us check this

claim by induction. In the reduction we did above having the product of the numbers involved
equal to 1, we may disregard the numbers which are already equal to one. So, if all the numbers
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involved are different from 1, the inequality used, is a strict inequality: b1 + b2 > b1b2 + 1. As a
result, b1+ b2+ b3+ ...+ bn+1 > b1b2+1+ b3+ ...+ bn+1 ≥ n+1 which contradicts the induction
hypothesis. It remains that all numbers must be equal if we have an identity in (7.2).

Excercise: Use induction to rearrange the above proof reducing (7.2) to the case a1+a2+· · ·+an =
n.
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