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Preface

These lecture notes were written during the two semesters I have taught at the
Georgia Institute of Technology, Atlanta, GA between the fall of 2005 and spring of
2006. I have used the well-known book by Edwards and Penny [5]. Some additional
proofs are introduced in order to make the presentation as comprehensible as possi-
ble. Even that the audience was mostly engineering major students I have tried to
teach this course for mathematics majors.

I have used the book of F. Diacu [4] when I taught the Ordinary Differential
Equation class at Columbus State University, Columbus, GA in the Spring of 2005.
This work determined me to have a closer interest in this area of mathematics and
it influenced a lot my teaching style.
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Chapter 1

Solving various types of
differential equations

1.1 Lecturel

Quotation: “The mind once expanded to the dimensions of larger ideas,
never returns to its original size.” |Olwer Wendell Holmes

Notions, concepts, definitions, and theorems: Definition of a dif-
ferential equations, the definition of a classical solution of a differential
equation, classification of differential equations, an example of a real-
world problem modeled by a differential equation, definition of an initial
value problem.

If we would like to start with some examples of differential equations, before
we give a formal definition, let us think in terms of the main classes of functions that
we studied in Calculus such as polynomial, rational, power functions, exponential,
logarithmic, trigonometric, and inverse of trigonometric functions, what will be some
equations that will be satisfied by these classes of functions or at least some of these
types of functions?

For polynomials, we can think of a differential equation of the type:

(1.1) j—y(x) =0 for all z in some interval,
:L‘n

(with n € N) whose “solutions” would obviously include any arbitrary polynomial
function y of x with degree at most n — 1. In other words y(z) = a12" ' + az™ 2 +
... + a, is a polynomial function that satisfies (1.1). Let us notice that there are n
constants that we can choose as we like in the expression of y.


https://en.wikipedia.org/wiki/Oliver_Wendell_Holmes_Jr.
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Let us say we consider a power function whose rule is given by y(x) = x
with @ € R. Then by taking its derivative we get %(x) = ax® !, we see that we
can make up a differential equation, in terms of only the function itself, that this
function will satisfy

d
(1.2) d—y(x) = ay(:v)’ for z in some interval contained in (0, 00).
x x
1
For a rational function, lets say y(x) = 2:6 —:_ 2 eRY\ {—% , if we take the
x
d 1 1

derivative of y(z), we get %(:ﬁ) = T and since y(z) = 5t 50r+ 1) a

relatively natural way to involve the derivative and the function will be:

(13 Y 2) = ~(2yw) ~ 1)

For a general rational function, it is not going to be that easy to find a cor-
responding differential equation that will be similar to , in which the variable
x doesn’t appear explicitly as in . These equations will be called later au-
tonomous differential equations, as part of a wider class called separable equations.
In such cases, most of the time the independent variable is dropped from the writing
and so a differential equation as can be rewritten simply as 3y = —(2y — 1)2.

Next, we are interested in finding a similar differential equation satisfied by
an exponential function such as y(z) = Ce*, for some real constants C' and k. It is
easily seen that such a candidate can be:

(1.4) W2 = ky(a).

If we take f(z) = sinx and g(z) = cosx then we see that these two functions satisfy
the following system of differential equations:

Y 2) = ota)
(1.5)
99 (2) = —f(a).

dx
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Let us observe that both functions satisfy the differential equation f” + f = 0.

Now we are going to consider f(z) = arctanz, = € R. Because the derivative of f
is f'(z) = H% we can build a differential equation that f will satisfy:

1

(16) P @) = T G 7))

s or f'=(1+tan® f)".

Finally a function of two variables such as f(z,y) = 2* — y?, x,y € R? satisfies:

ofr  of*

At this point we have enough examples and we will give a formal definition of a
differential equation:

Definition 1.1.1. A differential equation, shortly DE, is a relationship between a
finite set of functions and their derivatives or partial derivatives of various order.

Depending upon the domain of the functions involved, we have ordinary differential
equations, or shortly ODE, when only one variable appears (as in equations (|L.1))-
(1.6))) or partial differential equations, shortly PDE, (as in (1.7))).

From the point of view of the number of functions involved we may have one function,
in which case the equation is called simple, or we may have several functions, as in
(1.5)), in which case we say we have a system of differential equations.

Taking into account the structure of the equation we may have linear differential
equation when the simple DE in question could be written in the form:

(1.8) ao(2)y"™ (2) + ar(@)y™ V() + ... + an()y(z) = F(a),

or if we are dealing with a system of DE or PDE, each equation should be linear
as before in all the unknown functions and their derivatives. In case such represen-
tations are not possible we are saying that the DE is non-linear. If the function F’
above is zero the linear equation is called homogenous. Otherwise, we are dealing
with a non-homogeneous linear DE. If the differential equation does not contain (de-
pend) explicitly on the independent variable or variables we call it an autonomous
DE. As a consequence, the DE , is non-autonomous. As a result of these defini-

tions the DE’s (1.1]), (1.2)), (1.4}, (1.5)) and (|1.7)) are homogeneous linear differential

equations.
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The highest derivative that appears in a DE gives the order. For instance the
equation ([1.1)) has order n and (|1.7)) has order two.

Definition 1.1.2. We say that a function or a set of functions is/form a solution
of a differential equation if the derivatives that appear in the DE exist on a certain
domain and the DFE is satisfied for all the values of the independent variables in that
domain.

This concept is usually called a classical solution of a differential equation. The
domain for a DE is usually an interval or a union of intervals.

As an exercise, check that the function of two variables F'(z,t) = u(x+uvt)+v(x—uvt),
where u and v are twice differentiable functions and v is some non-zero real number,
is a solution of the 1-D wave equation:

0’F 1 0°F
(1.9) —_— = =

0x? v2 Ot?
Next, we are going to deal with an example of DE that has rather a more real-world
flavor than a theoretical one like the ones we have encountered so far.

Problem 1.1.3. [Calculus Textbook by Stewart] We have a man (John) and
his dog (Buddy) running on a straight beach (see Figure . At a given point
in time, when the dog is 12 m from his owner, John starts running in the direction
perpendicular to the beach with a certain constant speed. Buddy runs twice as fast
and always toward John. The question is “where are they going to meet?”

Solution: Let us assume that Buddy runs on a path given by the graph of a
function f as in the figure above. Suppose that after a certain time, ¢, Buddy is at a
position (z, f(z)) and John is on the y-axis at (0, vt) where v is his speed in meters
per second (assumed constant) of John. The fact that Buddy is running toward
John at every time ¢, is going to give us a DE. This condition can be translated into
the fact that the tangent line to the graph of f at (z, f(z)) passes through (0, vt).

The equation of the tangent line is Y — f(x) = f'(z)(X — z) and so the
intersection with the y axis is vt = f(z) — f/(x)z. Let us assume the distance
between Buddy and John is originally a (a = 12 in this problem). Buddy is running
the distance f; 1+ f'(s)%ds which is supposed to be twice as big as vt (Buddy’s

speed is given to be twice as big v). Hence we get the equation f; V14 f(s)ds =
2(f(z)— f'(x)z) in z, for every z in the interval (0, a). By the Fundamental Theorem
of Calculus, differentiating with respect to z we obtain: —\/1 + f'(x)? = 2(—z f"(z))

or
—f"(x) = i x>0
1+ fi(z)? 2z '
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ENDING POINT

STARTING POINT

Figure 1.1: The man and his dog’s trajectory

Integrating with respect to x gives

In(f/(2) + v/1+ (@) = kv,

for some constant k£ > 0. Since f’'(a) = 0 we determine k right away to be k = \/La

Solving for f'(z) gives f'(x) = (% — %)/2 Integrating again with respect to z
we obtain f(z) = g% — v/ax 4+ C for another constant C. Since f(a) = 0 we get

C' = 2a/3. Therefore f(0) = 2. So, the dog and its owner are going to meet at 8
meters from the point where John was when the “race” began. [ |

In general, we like to know whether or not, of course under certain circum-
stances, a DE has a unique solution so that we may talk about the solution of the
DE. This thing may happen but in the the general situation, this is hardly the case
without some extra conditions such as initial conditions. To accomplish such a thing
we usually consider the so-called initial value problem which takes the following form
when we are dealing with a single, first-order ODE:

W(x) = fz,y(x),z €1,
(1.10)
y(wo) = Yo, z0 € I,y0 € J,I x J C Domain(f),
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where I and J are open intervals. For a system of ODE or a higher order ODE the
initial value problem associated to it takes a slightly different form. We are going
to see those at the appropriate time.

Homework: Problems 1-12, 27-31, 34, 37-43, 47 and 48, pages 8-9.
More challenging problems:

(a) Show that the initial value problem equation f” + f =0, f(0) = f/(0) = 0 has
only the trivial solution f = 0.

(b) Show that the equation f”+ f = 0 has only the solution f(z) = C} sinx+C5 cos x
for x € R, and some constants C; and C5.

[PutnamAs, 48", 1987] Let us consider the function y = y(x) twice differ-
entiable, satisfying y”(x) — 2y/(x) + y(x) = 2¢* for all real x.

(i) If y(z) > 0 for all =, is it true that ¢/(z) > 0 for all 7 (include your
arguments for the answer)

(ii) If ¢/(z) > 0 for all z, is it true that y(x) > 0 for all x ? (include your
arguments for the answer)
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so2C —2 =1, and hence C = % With this value of C we obtain the desired solution

y=2/(3 - 2%)

1
Yy =5 =

5 3—2x

x=3/2 Figure 1.1.7 shows the two branches of the graph y = 2/(3 — 2x). The left-hand branch is
the graph on (—oo, %) of the solution of the given initial value problem y’ = y2, y(1) = 2.
The right-hand branch passes through the point (2, —2) and is therefore the graph on (%, 00)
of the solution of the different initial value problem y’ = y2, y(2) = —2. |

- () fF—

(2,-2)

The central question of greatest immediate interest to us is this: If we are given
-5 a differential equation known to have a solution satisfying a given initial condition,
%5 0 5 .

X how do we actually find or compute that solution? And, once found, what can we do
with it? We will see that a relatively few simple techniques—separation of variables
(Section 1.4), solution of linear equations (Section 1.5), elementary substitution
methods (Section 1.6)—are enough to enable us to solve a variety of first-order

FIGURE 1.1.7. The solutions of
y’ = y2 defined by
y(x) =2/(3 — 2x).

equations having impressive applications.

m Problems

In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re-
spect to x.

LY =t = ==
2. )/ +2y =0,y =3e2*
3. ¥ + 4y = 0; y; = cos2x, yp = sin2x
4. y” = 9y, y1 = e3x,y2 = e_3x
500y =y 2 *; =X —e®
6. y' + 4y +4y =0;y; = e 2, yp = xe 2*
7. y" =2y +2y =0; y1 = e cosx, y, = e*sinx
8. "+ 7y =3cos2x, y1 =CO0SX—CoS2xX, yp = Sin x —cos 2x
9. ’+2x 2 = 0; = —
¥+ 2xy DG
1
10. x2y” +xy' =y =Inx;y; =x—Inx, yo = — —Inx
X
1 Inx
11. xzy” + 5xy/ +4y = O,yl = x_2,y2 — x_2

12. x2y” — xy’ + 2y = 0; y; = xcos(Inx), y» = x sin(Inx)

In Problems 13 through 16, substitute y = "% into the given
differential equation to determine all values of the constant r
for which y = e"* is a solution of the equation.

14. 49" =y
16. 3y” + 3y’ —4y =0

13. 3y’ =2y
15. y" +y' =2y =0

In Problems 17 through 26, first verify that y(x) satisfies the
given differential equation. Then determine a value of the con-
stant C so that y(x) satisfies the given initial condition. Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high-
light the one that satisfies the given initial condition.

17. Y/ +y =0; y(x) = Ce™, y(0) =2
18. y' =2y; y(x) = Ce?*, y(0) = 3
19. y =y +1;y(x) =Ce* —1,y(0) =5

20. Y =x—y;y(x)=Ce ™ +x—1,9(0) =10
21,y +3x%2y =0; y(x) = Ce_x3, y(0) =7
22. ¥y =1;y(x) =In(x + C), y(0) =0

d
23. xﬁ +3y =2x; y(x) = %xs +Cx3, 9y =1

24. xy' =3y =x3; y(x) = x3(C +1nx), y(1) = 17
25. 3/ =3x%2(y%2 4+ 1); y(x) = tan(x3 + C), y(0) = 1
26. y' + ytanx = cosx; y(x) = (x +C)cosx, y(r) =0

In Problems 27 through 31, a function y = g(x) is described
by some geometric property of its graph. Write a differential
equation of the form dy/dx = f(x, y) having the function g as
its solution (or as one of its solutions).

27. The slope of the graph of g at the point (x, y) is the sum
of x and y.

28. The line tangent to the graph of g at the point (x, y) inter-
sects the x-axis at the point (x/2, 0).

29. Every straight line normal to the graph of g passes through
the point (0, 1). Can you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curve of the form
y = x2 + k (k is a constant) where they meet.

31. The line tangent to the graph of g at (x, y) passes through
the point (—y, x).

In Problems 32 through 36, write—in the manner of Egs. (3)
through (6) of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P.

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv/dt of a Lamborghini is proportional
to the difference between 250 km/h and the velocity of the
car.
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35. In a city having a fixed population of P persons, the time
rate of change of the number N of those persons who have
heard a certain rumor is proportional to the number of
those who have not yet heard the rumor.

36. In acity with a fixed population of P persons, the time rate
of change of the number N of those persons infected with
a certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use
your knowledge of derivatives to make an intelligent guess.
Then test your hypothesis.

37. y" =0 38. y/ =y
39. xy' +y = 3x? 40. (y)2 +y2=1
41. y' +y =e* 42. y"+y=0

Problems 43 through 46 concern the differential equation

dx

— = kxz,

dt
where k is a constant.

43. (a) If k is a constant, show that a general (one-parameter)
solution of the differential equation is given by x(t) =
1/(C — kt), where C is an arbitrary constant.
(b) Determine by inspection a solution of the initial value
problem x’ = kx?2, x(0) = 0.
44. (a) Assume that k is positive, and then sketch graphs of
solutions of x’ = kx? with several typical positive
values of x(0).
(b) How would these solutions differ if the constant k
were negative?
45. Suppose a population P of rodents satisfies the differen-
tial equation dP/dt = kP?. Initially, there are P(0) = 2

3C=—2 C=-1C=0 C=1C=2 C=3
T T

= 0

C=-4
1

-2

_3—37 2) -1 o\
C=3C=-2C=-1 C=

FIGURE 1.1.8. Graphs of solutions of the
equation dy/dx = y2.

46.

47.

48.

rodents, and their number is increasing at the rate of
dP/dt = 1 rodent per month when there are P = 10 ro-
dents. Based on the result of Problem 43, how long will it
take for this population to grow to a hundred rodents? To
a thousand? What’s happening here?

Suppose the velocity v of a motorboat coasting in water
satisfies the differential equation dv/dt = kv?. The ini-
tial speed of the motorboat is v(0) = 10 meters per sec-
ond (m/s), and v is decreasing at the rate of 1 m/s> when
v = 5 m/s. Based on the result of Problem 43, long does
it take for the velocity of the boat to decrease to 1 m/s? To
%m/s? When does the boat come to a stop?

In Example 7 we saw that y(x) = 1/(C — x) defines a
one-parameter family of solutions of the differential equa-
tion dy/dx = y?. (a) Determine a value of C so that
y(10) = 10. (b) Is there a value of C such that y(0) = 0?
Can you nevertheless find by inspection a solution of
dy/dx = y? such that y(0) = 0? (c) Figure 1.1.8 shows
typical graphs of solutions of the form y(x) = 1/(C — x).
Does it appear that these solution curves fill the entire xy-
plane? Can you conclude that, given any point (a,b) in
the plane, the differential equation dy/dx = y? has ex-
actly one solution y(x) satisfying the condition y(a) = h?
(a) Show that y(x) = Cx* defines a one-parameter fam-
ily of differentiable solutions of the differential equation
xy’ = 4y (Fig. 1.1.9). (b) Show that

) —x* ifx <0,
X) =
Y iy (a0

defines a differentiable solution of xy’ = 4y for all x, but is
not of the form y(x) = Cx*. (¢) Given any two real num-
bers a and b, explain why—in contrast to the situation in
part (c) of Problem 47—there exist infinitely many differ-
entiable solutions of xy’ = 4y that all satisfy the condition
y(a) = b.

100

(o))
(=)
T
T
|

|
D
(=)
T

—-80 =

_100—5—4—3—2—1 0123435

X

FIGURE 1.1.9. The graph y = Cx* for
various values of C.
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1.2 Lecture 11

Quotation: “ An idea that can be used once is a trick. If it can be used
more than once it becomes a method.” George Polya and Gabor Szego

Notions, concepts, definitions, and theorems: Methods of study
for differential equations, a/the general solution of a differential equa-
tion, particular solution, velocity and acceleration example, slope field
and solution curves, existence theorem and an existence and uniqueness
theorem.

We say that differential equations are studied by quantitative or exact methods
when they can be solved completely (i.e. all the solutions are known and could be
written in closed form in terms of elementary functions or sometime special functions
(or inverses of these type of functions). This reduces the study of DE to the study
of functions of one or more real variables given in an explicit or implicit way.

As an example let us consider the equation in Exercise 4, page 16

dy 1
1.11 — = —.
(1.11) de 22
If we rewrite the equation as - (y(z) 4+ 1) = 0 we see that we are dealing with

a function whose derivative is zero. If we talk about solutions defined on an interval,
the Mean Value Theorem from Calculus, tells us that y(x) —1—% = ( for some constant
C and for all x € I, I an interval not containing zero. Therefore any solution (as
long as we consider the domains of solutions intervals like I) of the DE in (L.11]) is
of the form y(z) = C' — < for x € I. So, we were able to solve the equatio
exactly. To finish the Exercise 4, page 16, we determine C' such that the initial value
condition, y(1) = 5, is satisfied too. This gives C'= 6 and y(z) = = for all z € 1.

There are also some other types of methods, called analytical methods or qual-
itative methods in which one can describe the behavior of a DE’s solution such as
existence, uniqueness, stability, chaotic or asymptotic character, boundlessness, pe-
riodicity, etc. without actually solving it exactly. This is an important and relatively
new step in the theory of DE. Important because most of the differential equations
cannot be solved exactly and are relatively new because they all started mainly at
the end of the 19th century. One of the mathematicians who pioneered in this area
was Henri Poincaré.

We can add to the list another type of method for studying DE to which are
numerical methods. These methods mainly involve the use of a computer, a specially
designed software following the procedure given by an approximation algorithm. In
this part of mathematics one studies the algorithms and the error analysis involved
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in approximating the solution of a DE that in general cannot be studied with exact
methods. Very good approximations could be obtained most of the time only locally
(not too far from the initial value point).

Definition 1.2.1. A general solution of a DE of order n is a solution that is given
in terms of n independent parameters. A particular solution of a DE (relative to a
general solution) is a solution that could be obtained from that general solution by
simply choosing specific values of the parameters involved.

If all the solutions of DE are particular solutions obtained from a general
solution then this is referred to as the general solution.

As an example, we are going to show later that the general solution of the
second order linear equation y” + 4y’ +4 = 0 is y(z) = (C1 + Cox)e % for all x € I.

Another example is the particular case of the movement of a body under the
—

action of a constant force according to Newton’s second law mechanics: ma = F.
This implies that if we denote the position of the body relative to a fixed point in
space by z(t) (the dependent variable here being the time t, and units are fixed but
not specified). Integrating twice the equation

d*x
(1.12) ﬁ(t) = a,
we get
(1.13) z(t) = at®/2 + vt + z0, t € R,

where a is the constant acceleration, vy is the initial velocity and z( is the initial
position. We can look at this as the general solution of the equation ((1.12)).

As an application let us work the following problem from the book (No. 36,
page 17).

Problem 1.2.2. If a woman has enough “spring” in her legs to jump vertically to
a hight of 2.25 ft on the earth, how high could she jump on the moon, where the
surface gravitational acceleration is (approzimately) 5.3 g?

Solution: From the equation ((1.13)) we see that whatever her speed is initially,
say vp, on earth, she is going to get to a maximum height h = vt — gt?/2 where
t is given by the condition that dx/dt = 0 or vy — gt = 0. Hence, we get h =

v — g(%)z/Q or h = %. (Notice that, so far, this is basically solving Problem 35,

page 17). From this we can solve for vy and obtain vy = /2gh. On the moon she
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is going to use the same initial velocity (this is saying that the energy is the same).

v2 2gh h
Hence hpur = S = Qng = gg—m or Nppaw = % = 13.58 ft. [ |

From now on in this Chapter we are going to concentrate on first order, single,
ODE of the form:

(1.14) V= i) o L) = fla ().

We are trying to solve for y as a function of x. The best thing here is to look
at an example. Let us take the example from the book, page 18, i.e. 3 = 22 + 32
whose solution is not expressible in terms of simple functions. If we try Maple on
this we get

(2) = _wBesselJ(—?)/él, 22/2)C + BesselY (—3/4,2%/2)
W= BesselJ(1/4,2%/2)C + BesselY (1/4,22/2)
We will learn later about Bessel functions which appear in the above expression of

the general solution. This expression is useful if we want to do numerical calculations
since Bessel functions can be expressed in terms of power series.

On the other hand if we imagine that at each point of coordinates (x,y) in
the xy-plane we draw a little unit vector of slope f(z,y) = 2 + 3 then we get the
picture below:

/////////

/////// SN LSS //‘ 7L L
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P S R B e S P
PP S S RS S S P4
SN
A LR PL T Piit B F P PP LTS L A A
[/ 7777777
[177777777 4777777777
rr7rvrrvrrsnNr 7777717

Vector / slope field

and we kind of see how the solution curvesshould look like. We are drawing next (of
course, using a special tool like Maple) the solution curve passing through (0, —1)
for instance.
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Figure 3

It seems like the vector field in Figure 2 defines uniquely the solutions curves. We
are asking then the two fundamental questions in most of the mathematics when
dealing with equations:

e When do we have at least a solution for (1.14))?
e If there exist a solution of ((1.14)) is that the only one?

The first problem is usually referred as existence problem and the second as
the uniqueness problem. In general, in order to obtain existence for the DE ((1.14))
we only need continuity for the function f:

Theorem 1.2.3. (Peano) If the function f(x,y) is continuous on a rectangle
R = {(z,y)la < x < byc <y < d}, and if (xo,y0) in R, then the initial value
problem

H(x) = f(z,y(x))
(1.15)
y(%) = Yo,

has a solution in the neighborhood of x.

We need more than continuity in order to obtain uniqueness:

Theorem 1.2.4. (Cauchy) Let f(z,y) be continuous such that the derivative g—g(a:, Y)

exists and it is continuous on a rectangle R = {(z,y)|la < x < b,c < y < d}, and
if (xo,y0) in R, then the initial value problem has a solution which is unique
on an interval around xg.
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As an example we will look at Problem 30, page 28.

Problem 1.2.5. Verify that if ¢ is a constant, then the function defined piecewise

by
1 if v<¢
(1.16) y(r) =qcos(x—c) if c<zx<c+m
-1 if x>c+
satisfies the differential equation y' = —+/1 —y? for all + € R. Determine how

many different solutions (in terms of a and b) the initial value problem

{yf - VTP

y(a) ="b

has.

Solution: It is not hard to see that the function y given in (8.1]) is differentiable
at each point and its derivative is actually

0if z<¢c
(1.17) Y(@)=1< —sin(z—c) if c<x<c+m
0if x>c+m

Hence if x < ¢ or > ¢+ 7 then the equation vy = —/1 — 2 is satisfied because
Y =—1—y2=0. lfc<az<c+mthen 0 <z —c <7 and then sin(z — ¢) is
positive, which implies \/1 — cos(z — ¢)? = sin(z —¢) and so the equation is satisfied
in this case also.

For the second part of this problem, it is clear that if |b| > 1 we do not have any
solution because /1 — y(a)? is not a real number. If b = 1, we have infinitely many
solutions, by just taking ¢ > a, then the y(x) defined by is a solution of the
initial value problem in the discussion. Similarly, we get infinitely many solutions if
b = —1, in which case we have to take c+ T <aorc<a—m If =1 <b <1 we
have a unique solution around the point a by Cauchy’s Theorem but not on R.

Homework:
Section 1.2 pages 15-17: 1-5, 11-15, 35 and 36;
Section 1.3 pages 26-27: 11-15, 27-33.
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Suppose that a swimmer starts at the point (—a, 0) on the west bank and swims
due east (relative to the water) with constant speed vg. As indicated in Fig. 1.2.5, his
velocity vector (relative to the riverbed) has horizontal component vs and vertical
component vg. Hence the swimmer’s direction angle « is given by

UR
tanoy = —.

vs

Because tan o = dy/dx, substitution using (18) gives the differential equation

dy Vg x?

NCAL N 19

dx  vs ( a? (19)
for the swimmer’s trajectory y = y(x) as he crosses the river.

Suppose that the river is 1 mile wide and that its midstream velocity is v9 = 9 mi/h. If the
swimmer’s velocity is vg = 3 mi/h, then Eq. (19) takes the form

dy 5
L= 3(1 —4x?).
I ( x7)

Integration yields

y(x) = /(3— 12x?)dx =3x —4x> + C
for the swimmer’s trajectory. The initial condition y (—%) = Oyields C =1, so

y(x) =3x —4x3 + 1.

Then 5
1 1 1
() =3(3)-4(3) 12
so the swimmer drifts 2 miles downstream while he swims 1 mile across the river. ]
m Problems
In Problems 1 through 10, find a function y = f(x) satisfy- In Problems 11 through 18, find the position function x(t) of a
ing the given differential equation and the prescribed initial moving particle with the given acceleration a(t), initial posi-
condition. tion xg = x(0), and initial velocity vg = v(0).
L ;l—y:2x+1;y(0):3 11. a(t) = 50, vo = 10, xp = 20
12. a(t) = —20,v9 = —15,x90 =5
2 Y 20 =1
.d——x—),y )= 13. a(t) =3t,v0 =5,x90 =0
d b = = — =
3. d_y = Jx;y(4) =0 14. a(t) =2t + 1, vo 7,x0 =4
* 15. a(t) = 4@ +3)%, v9=—1,x0 =1
dy
4. — = —;y() = 1
2 16. a(t) = ,v0=—1,x9 =1
lex X 1 (1) Jita 0 0
y
5. — = ——;y(2) =1 1
dx x4+ 2 17. a(t):m,vozo,xozo
6. Z—y = x«/xz +9; y(—4) =0 18. a(t) = SOSiHSI, vy = —10, X0 = 8
X
7 d_y _ 10 . 3(0) =0 8. d_y =cos2x; y(0) = 1 In Problems 19 through 22, a particle starts at the origin and
dx  x24+1 dx travels along the x-axis with the velocity function v(t) whose
dy 1 . dy . graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph
9. dx N y(©)=0 10. ax e y(0) =1 of the resulting position function x(t) for 0 <t < 10.
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19.

20.

21.

22,
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10

0 2 4 6 8
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FIGURE 1.2.6. Graph of the
velocity function v(#) of Problem 19.

10

8

0 2 4 6 8

10
t

FIGURE 1.2.7. Graph of the
velocity function v(¢) of Problem 20.

10

8

FIGURE 1.2.8. Graph of the
velocity function v(#) of Problem 21.

10

8

(3.5):

FIGURE 1.2.9. Graph of the
velocity function v(#) of Problem 22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

What is the maximum height attained by the arrow of part
(b) of Example 3?
A ball is dropped from the top of a building 400 ft high.
How long does it take to reach the ground? With what
speed does the ball strike the ground?
The brakes of a car are applied when it is moving at 100
km/h and provide a constant deceleration of 10 meters per
second per second (m/ s2). How far does the car travel be-
fore coming to a stop?
A projectile is fired straight upward with an initial veloc-
ity of 100 m/s from the top of a building 20 m high and
falls to the ground at the base of the building. Find (a) its
maximum height above the ground; (b) when it passes the
top of the building; (c) its total time in the air.
A ball is thrown straight downward from the top of a tall
building. The initial speed of the ball is 10 m/s. It strikes
the ground with a speed of 60 m/s. How tall is the build-
ing?
A baseball is thrown straight downward with an initial
speed of 40 ft/s from the top of the Washington Monu-
ment (555 ft high). How long does it take to reach the
ground, and with what speed does the baseball strike the
ground?
A diesel car gradually speeds up so that for the first 10 s
its acceleration is given by

dv

o= (0.12)t2 + (0.6)t  (ft/s?).
If the car starts from rest (xg = 0, vg = 0), find the distance
it has traveled at the end of the first 10 s and its velocity at
that time.

A car traveling at 60 mi/h (88 ft/s) skids 176 ft after its
brakes are suddenly applied. Under the assumption that
the braking system provides constant deceleration, what
is that deceleration? For how long does the skid continue?
The skid marks made by an automobile indicated that its
brakes were fully applied for a distance of 75 m before
it came to a stop. The car in question is known to have
a constant deceleration of 20 m/s? under these condi-
tions. How fast—in km/h—was the car traveling when
the brakes were first applied?

Suppose that a car skids 15 m if it is moving at 50 km/h
when the brakes are applied. Assuming that the car has
the same constant deceleration, how far will it skid if it is
moving at 100 km/h when the brakes are applied?

On the planet Gzyx, a ball dropped from a height of 20 ft
hits the ground in 2 s. If a ball is dropped from the top of
a 200-ft-tall building on Gzyx, how long will it take to hit
the ground? With what speed will it hit?

A person can throw a ball straight upward from the sur-
face of the earth to a maximum height of 144 ft. How
high could this person throw the ball on the planet Gzyx
of Problem 337

A stone is dropped from rest at an initial height /# above
the surface of the earth. Show that the speed with which it
strikes the ground is v = \/2gh.



36.

37.

38.

39.

40.

Suppose a woman has enough “spring” in her legs to jump
(on earth) from the ground to a height of 2.25 feet. If
she jumps straight upward with the same initial velocity
on the moon—where the surface gravitational acceleration
is (approximately) 5.3 ft/s>—how high above the surface
will she rise?

At noon a car starts from rest at point A and proceeds at
constant acceleration along a straight road toward point
B. If the car reaches B at 12:50 P.M. with a velocity of
60 mi/h, what is the distance from A to B?

At noon a car starts from rest at point A and proceeds with
constant acceleration along a straight road toward point C,
35 miles away. If the constantly accelerated car arrives at
C with a velocity of 60 mi/h, at what time does it arrive
at C?

If a = 0.5 mi and vop = 9 mi/h as in Example 4, what must
the swimmer’s speed vg be in order that he drifts only 1
mile downstream as he crosses the river?

Suppose that ¢ = 0.5 mi, vg = 9 mi/h, and vg = 3 mi/h
as in Example 4, but that the velocity of the river is given
by the fourth-degree function

x4
VR = Vo l—a—4

rather than the quadratic function in Eq. (18). Now find
how far downstream the swimmer drifts as he crosses the
river.

41.

42.

43.

44.
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A bomb is dropped from a helicopter hovering at an alti-
tude of 800 feet above the ground. From the ground di-
rectly beneath the helicopter, a projectile is fired straight
upward toward the bomb, exactly 2 seconds after the bomb
is released. With what initial velocity should the projectile
be fired in order to hit the bomb at an altitude of exactly
400 feet?

A spacecraft is in free fall toward the surface of the moon
at a speed of 1000 mph (mi/h). Its retrorockets, when
fired, provide a constant deceleration of 20,000 mi/h?. At
what height above the lunar surface should the astronauts
fire the retrorockets to insure a soft touchdown? (As in
Example 2, ignore the moon’s gravitational field.)

Arthur Clarke’s The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Its alu-
minized sail provides it with a constant acceleration of
0.001g = 0.0098 m/s2. Suppose this spacecraft starts from
rest at time ¢ = 0 and simultaneously fires a projectile
(straight ahead in the same direction) that travels at one-
tenth of the speed ¢ = 3 x 10% m/s of light. How long will
it take the spacecraft to catch up with the projectile, and
how far will it have traveled by then?

A driver involved in an accident claims he was going only
25 mph. When police tested his car, they found that when
its brakes were applied at 25 mph, the car skidded only
45 feet before coming to a stop. But the driver’s skid
marks at the accident scene measured 210 feet. Assum-
ing the same (constant) deceleration, determine the speed
he was actually traveling just prior to the accident.

K] Slope Fields and Solution Curves

Consider a differential equation of the form

dy

) —
dx

= f(x.y) )

where the right-hand function f(x, y) involves both the independent variable x and
the dependent variable y. We might think of integrating both sides in (1) with re-
spect to x, and hence write y(x) = [ f(x, y(x))dx + C. However, this approach
does not lead to a solution of the differential equation, because the indicated integral
involves the unknown function y(x) itself, and therefore cannot be evaluated explic-
itly. Actually, there exists no straightforward procedure by which a general differen-
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking
differential equation as y’ = x? + y? cannot be expressed in terms of the ordinary
elementary functions studied in calculus textbooks. Nevertheless, the graphical and
numerical methods of this and later sections can be used to construct approximate
solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions

There is a simple geometric way to think about solutions of a given differential
equation y’ = f(x,y). At each point (x, y) of the xy-plane, the value of f(x,y)
determines a slope m = f(x, y). A solution of the differential equation is simply
a differentiable function whose graph y = y(x) has this “correct slope” at each
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A more detailed version of Theorem I says that, if the function
f(x,y) is continuous near the point (a, b), then at least one so-
lution of the differential equation y' = f(x,y) exists on some
open interval I containing the point x = a and, moreover, that
if in addition the partial derivative 0f /0y is continuous near
(a,b), then this solution is unique on some (perhaps smaller)
interval J. In Problems 11 through 20, determine whether ex-
istence of at least one solution of the given initial value prob-
lem is thereby guaranteed and, if so, whether uniqueness of
that solution is guaranteed.

11. d—y:2x2y2; y(1) =-1
dx

12. d—y:xlny; y(1) =1
dx
dy

13. — = 3/y; 0)=1
I = V¥ 0
dy

14. — = 3/y; =
2=y y0=0
d

15, 2 — x—y;, y2)=2
dx

16.d—y: x—y; y@2) =1

d

17. y—y:x—l; y(0) =1
dx
d

18 yL —x—1; y1=0
dx
d

19. 2 — (1 +92);  y(©0) =0
dx
d

20 2L =220 y0)=1

dx
In Problems 21 and 22, first use the method of Example 2
to construct a slope field for the given differential equation.
Then sketch the solution curve corresponding to the given ini-

tial condition. Finally, use this solution curve to estimate the
desired value of the solution y(x).

21. y'=x+y, y0)=0; y(—4) =2
22. yY=y—x, y#=0; y(-4 =7

Problems 23 and 24 are like Problems 21 and 22, but now
use a computer algebra system to plot and print out a slope
field for the given differential equation. If you wish (and know
how), you can check your manually sketched solution curve by
plotting it with the computer:

23. ) =x24+y2—1, y0)=0; y@2)=?
1
4. ) =x+20% yE) =0 y2) =2
25. You bail out of the helicopter of Example 3 and pull the
ripcord of your parachute. Now k = 1.6 in Eq. (3), so
your downward velocity satisfies the initial value problem
dv

— =32 —1.6v,
dt v

In order to investigate your chances of survival, construct
a slope field for this differential equation and sketch the
appropriate solution curve. What will your limiting veloc-
ity be? Will a strategically located haystack do any good?
How long will it take you to reach 95% of your limiting
velocity?

26. Suppose the deer population P (¢) in a small forest satisfies
the logistic equation

T 0.0225P — 0.0003P~.

v(0) = 0.

Construct a slope field and appropriate solution curve to
answer the following questions: If there are 25 deer at
time 1 = 0 and ¢ is measured in months, how long will
it take the number of deer to double? What will be the
limiting deer population?

The next seven problems illustrate the fact that, if the hypothe-
ses of Theorem 1 are not satisfied, then the initial value prob-
lem y' = f(x.y), y(a) = b may have either no solutions,
finitely many solutions, or infinitely many solutions.

27. (a) Verify that if ¢ is a constant, then the function defined
piecewise by

) forx < ¢,
7)) =
4 (x —c)® forx>c¢



28.

29.

30.

31.

satisfies the differential equation y’ = 2,/y for all x (in-
cluding the point x = ¢). Construct a figure illustrating the
fact that the initial value problem y’ = 2,/y, y(0) = 0 has
infinitely many different solutions. (b) For what values of
b does the initial value problem y’ = 2./y, y(0) = b have
(1) no solution, (ii) a unique solution that is defined for all
x?

Verify that if & is a constant, then the function y(x) = kx
satisfies the differential equation xy’ = y for all x. Con-
struct a slope field and several of these straight line so-
Iution curves. Then determine (in terms of @ and b) how
many different solutions the initial value problem xy’ = y,
y(a) = b has—one, none, or infinitely many.

Verify that if ¢ is a constant, then the function defined
piecewise by
0 forx = ¢,
y(x) = 3
(x—c¢)” forx>c

satisfies the differential equation y’ = 3y2/3 for all x. Can
you also use the “left half” of the cubic y = (x — ¢)3 in
piecing together a solution curve of the differential equa-
tion? (See Fig. 1.3.25.) Sketch a variety of such solution
curves. Is there a point (a,b) of the xy-plane such that
the initial value problem y’ = 3y2/3, y(a) = b has either
no solution or a unique solution that is defined for all x?
Reconcile your answer with Theorem 1.

y
y=@-c)

y=x

FIGURE 1.3.25. A suggestion for Problem 29.
Verify that if ¢ is a constant, then the function defined
piecewise by
+1 if x = c,
cos(x—c) ife<x<c+m,
-1 ifx=Zc+m

y(x) =

satisfies the differential equation y’ = —/1 — y2 for all x.
(Perhaps a preliminary sketch with ¢ = 0 will be helpful.)
Sketch a variety of such solution curves. Then determine
(in terms of ¢ and ») how many different solutions the ini-
tial value problem y’ = —/1 — y2, y(a) = b has.

Carry out an investigation similar to that in Problem 30,
except with the differential equation y’ = +/1 —y2.
Does it suffice simply to replace cos(x — ¢) with sin(x —¢)
in piecing together a solution that is defined for all x?

32.

33.

34.

3s.
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Verify that if ¢ > 0, then the function defined piecewise by

ifx?2 =<e,

@) = ifx2>c¢

(% = c)?

satisfies the differential equation y’ = 4x./y for all x.
Sketch a variety of such solution curves for different val-
ues of ¢. Then determine (in terms of ¢ and ») how many
different solutions the initial value problem y’ = 4x./y,
y(a) = b has.

If ¢ # 0, verify that the function defined by y(x) =
x/(cx — 1) (with the graph illustrated in Fig. 1.3.26) sat-
isfies the differential equation x2y’ + y2 = 0 if x # 1/c.
Sketch a variety of such solution curves for different val-
ues of ¢. Also, note the constant-valued function y(x) =0
that does not result from any choice of the constant c.
Finally, determine (in terms of ¢ and ») how many dif-
ferent solutions the initial value problem x2y’ + y? = 0,
v(a) = b has.

FIGURE 1.3.26. Slope field for x2y’ 4+ y2 = 0 and
graph of a solution y(x) = x/(cx — 1).

(a) Use the direction field of Problem 5 to estimate the
values at x = 1 of the two solutions of the differ-
ential equation y’ = y — x + 1 with initial values
y(=1)=—-12and y(-1) = —0.8.

(b) Use a computer algebra system to estimate the val-
ues at x = 3 of the two solutions of this differen-
tial equation with initial values y(—3) = —3.01 and
y(=3) = —2.99.

The lesson of this problem is that small changes in initial
conditions can make big differences in results.

(a) Use the direction field of Problem 6 to estimate the
values at x = 2 of the two solutions of the differ-
ential equation y/ = x — y + | with initial values
y(=3) = —0.2 and y(=3) = +0.2.

(b) Use a computer algebra system to estimate the val-
ues at x = 2 of the two solutions of this differen-
tial equation with initial values y(—3) = —0.5 and
y(=3) = +0.5.

The lesson of this problem is that big changes in initial
conditions may make only small differences in results.
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1.3 Lecture II1

Quotation: “ Hardy, Godfrey H. (1877 - 1947) I believe that mathe-
matical reality lies outside us, that our function is to discover or observe
it, and that the theorems which we prove, and which we describe grandil-
oquently as our "creations,” are simply the notes of our observations. A
Mathematician’s Apology, London, Cambridge University Press, 1941. ”

Type of equations which can be solved with exact methods,
notions, real-world applications: Separable equations, implicit so-
lution, singular solution, natural growth or decay equation, and general
solution, Newton’s law of cooling or heating and its general solution, Tor-
ricelli’s law, liner first-order equations, and the general solution, mixture
problems.

One of the simplest cases in which the general solution could be found is the
so-called separable differential equations. This is an equation of the form

(1.18) y' = f(z)g(y)

where f and g are, let us say continuous functions on their domains that each
contain an interval. Let us assume that ¢ is not a constant. Then the function g is
not zero for a set containing an interval too, say I. Then the equation (1.18]) can

be written equivalently as %;) = f(z) if we assume that y € I. We are going to
1

treat the situation g(y) = 0 separately. Suppose G(u) is an antiderivative of PIe0)
on I, and F' and antiderivative of f. Then the equation in question is equivalent to
4 (G(y(z)) — F(z)) = 0 which means that the general solution should be

(1.19) G(y(z)) — F(z) = C.

Most of the time, this equation cannot be solved in terms of y(x) and we just
say in that case that the solution, y(z), is given implicitly.

The case ¢g(yo) = 0, will give solutions y(z) = yo which are usually called
singular solutions unless (1.19) gives this solution for some value of the constant
(parameter) C.

As an example let us take a look at Newton’s law of cooling or heating: the
time rate of change of the temperature T'(t) of a body immersed in a medium of
constant temperature M is proportional to the difference M — T'(t).

This translates into

(1.20) T'(t) = k(M — T(t))
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for some positive constant, which is a separable equation. Equivalently, this can be
written as T(Y;)(_t)M = —k assuming that T'(t) # M at any time . Integrating we
obtain In|T'(t) — M| = —kt + C which implies |T'(t) — M| = e *e®. If we make
t = 0 we get that e“ = (T — M) where Ty, is the initial temperature of the body.
Then the expression of T'(¢) becomes

(1.21) T(t) =M+ (Ty — M)e ™.

Let us observe that the equation admits only one other solution, namely
the constant function 7'(t) = M, ¢t € R, and that this solution is actually contained
in (|1.21]) by simply taking Ty = M. The equality above then is the general solution
of (1.20) As an application of , let us take and solve Problem 43, page 42.

Problem 1.3.1. A pitcher of buttermilk initially at 25° C is to be cooled by setting
it on the front porch, where the temperature is 0° C. Suppose that the temperature
of the buttermilk has dropped to 15° after 20 minutes. When will it be at 5°¢

Solution: Using the formula ((1.21)), twice, we get T'(20) = 25¢~2%% = 15 which
gives k = 5 1n(5/3) and so T'(t) = 25¢~* = 5. This last equation can then be solved

for t to obtain t = IHTE’ = 2011115 ~ 63 minutes. ]
nb5/3

Another application of separable DE is Torricelli’s law: suppose that a water
tank has a hole with area a at its bottom and cross sectional area A(y) for each
height y, then the water flows in such a way the following DE is satisfied:

(1.22) A(y)% = — k3.

where k = ay/2g and g is the the gravitational acceleration.
As an example of this situation let’s take problem 62, page 43.

Problem 1.3.2. Suppose that an initially full hemispherical water tank of radius 1
m has its flat side as its bottom. It has a bottom hole of radius 1 cm. If this bottom
hole is opened at 1 P.M., when will the tank be empty?

Solution: In the figure below we see that in order to calculate the cross-

sectional area A(y) corresponding to height y we need to apply the Pythagorean the-
orem: A(y) = (1 —y?). Hence the equation that we get is w%% = —T 15055V 29
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Figure 4

Integrating with respect to t we get %y% — Zy% = fg{);] + C'. Since at t =0 we

have y = 1 the constant C' is determined: C' = %8. We are interested to see when
is y = 0. This give t = 1\6/(%0 ~= 3614 second since ¢ is measured here in m/s?.

This is approximately 1 hours so the tank will be empty around 2 P.M. (14 seconds
after). |

1.3.1 Linear First Order DE

These equation are equations of the type:
(1.23) y' + P(z)y = Q(z), y(x0) = yo

where P and @) are continuous on a given interval I (zy € I). In order to solve
(1.23)), the trick is to multiply both side by e®®) where R(z) is an antiderivative of
P(z) on I. This Way the equation becomes %(y(w)eR(”*’)) = Q(x)ef™ which after

integration gives ye!™ = [Q(z ef@dz. So the general solution of is
(1.24) y(x) = eR(’:)/Q(:L’)eR( Vdx
Let us observe that if we have an initial value problem
(1.25) {y + P(a)y = Q(x),
y(zo) = vo

where xy € I, then we can take explicitly R(x f P(t)dt and " becomes

(1.26) y(z) = yoe~ ””)—ir/ Q)= R@qr g c 1.
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This proves the following theorem.

Theorem 1.3.3. Given that P and () are continuous functions on an interval I,
the initial value problem has a uniques solution on I given by .

As an example let’s solve the problem 12, page 54:

' 3y = 227
(1.27) {nyry o

y(2) = 1.

The equation becomes v’ + %y’ = 2z, Since R(z) = ff %dt = 3lnx we obtain that
we need to multiply the equation (y' + 2y’ = 22) by ) = 23. So, 23y + 32%y =
227. The left hand side is %(mg’y(x)), so if we integrate from 2 to a we obtain
a*y(a) — 8y(2) = [, 227dx. Equivalently, gSy(a) —8=2(% — 2. So, the solution
a 26
of this equation on I = (0,00) is y(a) = T3 for a € 1.
a

We are going to work out, as another application, the mixture problem 37 on

page 54.

Problem 1.3.4. A 400-gal tank initially contains 100 gal of brine containing 50 lb
of salt. Brine containing 1 1b of salt per gallon enters the tank at the rate of 5 gal/s,
and the well mized brine in the tank flows at the rate of 3 gal/s. How much salt will
the tank contain when it is full of brine?

Solution: The tank is filling up at a speed of 2 gal/s and it is needed 300 gallons
more to be full. So that is going to happen after 150 seconds. The volume of the
brine in the tank after ¢ seconds is V' (¢) = 100 + 2¢. Let us do an analysis similar
to that in the book at page 51. Denote the amount of salt in the tank at time ¢ by
y(t). We balance the change in salt y(t + h) — y(¢) during a small interval of time
h in the following way: the difference comes from the amount of salt that is getting
in the tank minus the amount that is getting out. The amount that is getting in is
5h 1b/s, if we measure h in seconds. Then the amount that is getting out assuming
perfect mixture (instantaneous) is approximately %Bh Ib of salt. So, the balance

is Iy(t%)_:’;i) ~ 5 — 1gg$;t’ t € [0,150]. Letting h go to zero, we obtain the initial
value problem

dy _ 5 — 3y(t)
(128) dt 1004-2¢
y(0) = 50.

This is a linear equation with initial condition that we solve using the same method

as above. We have R(t) = [, Tossds = 5In(%F). This means that we need to
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multiply by (%)% both sides of % + 13%)/5?% = 5. We get

3 1 3
50+t\2dy 3 [(50+t)? 50 + 1) 2
( 50 ) a+m( 50 ) y(t>_5< 50 )

Integrating this last equation with respect to ¢ from 0 to s, we obtain:

(5053 S) " (s) — 50 = 50\2@((50 ) 50%VED).

800000v/2—12500v/2 ~

Substituting s = 150 in this last equality, we obtain y(150) = 000>

393.75 1b.

Homework:
Section 1.4 pages 41-44: 1-28, 32, 43, 48, 61, 62 and 64;
Section 1.5 pages 54-56: 11-15, 26-33.
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Example 6

Solution

Positive y-values

1
|

FIGURE 1.4.9. Draining a
hemispherical tank.

m Problems

Find general solutions (implicit if necessary, explicit if conve-
nient) of the differential equations in Problems I through I8.
Primes denote derivatives with respect to x.

1. d_y +2xy =0 2.
dx
dy .
3. — = 4.
gy = ysinx
5. Zﬁd—y =./1—y2 6.
dx
d
7. & _ (64xy)1/3 8.
dx
9. (1-— xz)d—y =27 10.
dx
11. y' = xy3 12.
15 G2 e e 14.
dx
dy _ (x=1)y°
15, —= ———— 16.
dx  x22y3-y)

Chapter 1 First-Order Differential Equations

The fundamental theorem of calculus therefore implies that dV/dy = A(y) and
hence that

dVv —dV dy dy
—_— . — = A _ 2
a @ a7 29
From Egs. (28) and (29) we finally obtain
dy [

an alternative form of Torricelli’s law.

A hemispherical bowl has top radius 4 ft and at time ¢ = 0 is full of water. At that moment
a circular hole with diameter 1 in. is opened in the bottom of the tank. How long will it take
for all the water to drain from the tank?

From the right triangle in Fig. 1.4.9, we see that
Ay =2 =7 [16 = (4= )?] = 78y = y?).
With g = 32 ft/s2, Eq. (30) becomes
2,4y 1)?
m(8y =)= = - () V232

[erz =3y = [ far

—_

16032 2,52 1, ¢,
Now y(0) = 4, so
448

C = 5 -

The tank is empty when y = 0, thus when

16 3/2 2 5/2 _
T'4/ _3.4/ —

448

t =724

~ 2150 (s);

that is, about 35 min 50 s. So it takes slightly less than 36 min for the tank to drain.

17. y/ = 1+x+y+xy
side.)

) s = — g =5 gy —

(Suggestion: Factor the right-hand

dy
T +2xy% =0 Find explicit particular solutions of the initial value problems
dy in Problems 19 through 28.
dy 19. & — ye*, y(0) =2e
=E 3./Xy flx
dy 20. X =322 11, yo)=1
— =2xsecy dx
dx dy &
21. 2y = y(5) =2

d 5 T
WU+0)2 22 = (1+)? N T

' =x(G*+1) 2. = =4y -y, y(1)=-3
dy 14 /x dy
dx 1+ ./y 23.d—+1:2y, y(1) =1
2 — dy
(x* + D(tany)y’ = x 24. S = yeotx, y (%n) =i
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26.

27.

28.
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31.

32.

33.

34.

3s.

36.

37.

d
Ly a2y )=

dx
d
2 —axy2 43222, y(1) =1
dx
d
d_y =6e2*7Y, y(0)=0

X

dy 5
Zﬁd— =cos*y, y(@4) =mn/4
X

(a) Find a general solution of the differential equation
dy/dx = y?. (b) Find a singular solution that is not in-
cluded in the general solution. (c) Inspect a sketch of typi-
cal solution curves to determine the points («, ») for which
the initial value problem y’ = y2, y(a) = b has a unique
solution.

Solve the differential equation (dy/dx)? = 4y to verify the
general solution curves and singular solution curve that
are illustrated in Fig. 1.4.5. Then determine the points
(a,b) in the plane for which the initial value problem
(»")? = 4y, y(a) = b has (a) no solution, (b) infinitely
many solutions that are defined for all x, (¢) on some
neighborhood of the point x = «, only finitely many solu-
tions.

Discuss the difference between the differential equations
(dy/dx)?> = 4y and dy/dx = 2,/y. Do they have the
same solution curves? Why or why not? Determine the
points (a, b) in the plane for which the initial value prob-
lem y’ = 2,/y, y(a) = b has (a) no solution, (b) a unique
solution, (c) infinitely many solutions.

Find a general solution and any singular solutions of the
differential equation dy/dx = y+/y% — 1. Determine the
points (a, b) in the plane for which the initial value prob-
lem y' = y/¥2 —1, y(a) = b has (a) no solution, (b) a
unique solution, (¢) infinitely many solutions.
(Population growth) A certain city had a population of
25,000 in 1960 and a population of 30,000 in 1970. As-
sume that its population will continue to grow exponen-
tially at a constant rate. What population can its city plan-
ners expect in the year 2000?

(Population growth) In a certain culture of bacteria, the
number of bacteria increased sixfold in 10 h. How long
did it take for the population to double?

(Radiocarbon dating) Carbon extracted from an ancient
skull contained only one-sixth as much 1#C as carbon ex-
tracted from present-day bone. How old is the skull?

(Radiocarbon dating) Carbon taken from a purported relic
of the time of Christ contained 4.6 x 101° atoms of 4C
per gram. Carbon extracted from a present-day specimen
of the same substance contained 5.0 x 1010 atoms of 14C
per gram. Compute the approximate age of the relic. What
is your opinion as to its authenticity?

(Continuously compounded interest) Upon the birth of
their first child, a couple deposited $5000 in an account
that pays 8% interest compounded continuously. The in-
terest payments are allowed to accumulate. How much
will the account contain on the child’s eighteenth birth-
day?

1.4 Separable Equations and Applications 41

38.

39.

40.

41.

42.

43.

44.

45.

46.

(Continuously compounded interest) Suppose that you
discover in your attic an overdue library book on which
your grandfather owed a fine of 30 cents 100 years ago. If
an overdue fine grows exponentially at a 5% annual rate
compounded continuously, how much would you have to
pay if you returned the book today?

(Drug elimination) Suppose that sodium pentobarbital is
used to anesthetize a dog. The dog is anesthetized when
its bloodstream contains at least 45 milligrams (mg) of
sodium pentobarbitol per kilogram of the dog’s body
weight. Suppose also that sodium pentobarbitol is elim-
inated exponentially from the dog’s bloodstream, with a
half-life of 5 h. What single dose should be administered
in order to anesthetize a 50-kg dog for 1 h?

The half-life of radioactive cobalt is 5.27 years. Suppose
that a nuclear accident has left the level of cobalt radia-
tion in a certain region at 100 times the level acceptable
for human habitation. How long will it be until the region
is again habitable? (Ignore the probable presence of other
radioactive isotopes.)

Suppose that a mineral body formed in an ancient
cataclysm—perhaps the formation of the earth itself—
originally contained the uranium isotope 233U (which has
a half-life of 4.51 x 10° years) but no lead, the end prod-
uct of the radioactive decay of 238U. If today the ratio of
2381 atoms to lead atoms in the mineral body is 0.9, when
did the cataclysm occur?

A certain moon rock was found to contain equal numbers
of potassium and argon atoms. Assume that all the argon
is the result of radioactive decay of potassium (its half-life
is about 1.28 x 10° years) and that one of every nine potas-
sium atom disintegrations yields an argon atom. What is
the age of the rock, measured from the time it contained
only potassium?

A pitcher of buttermilk initially at 25°C is to be cooled
by setting it on the front porch, where the temperature is
0°C. Suppose that the temperature of the buttermilk has
dropped to 15°C after 20 min. When will it be at 5°C?

When sugar is dissolved in water, the amount A that re-
mains undissolved after # minutes satisfies the differential
equation dA/dt = —kA (k > 0). If 25% of the sugar dis-
solves after 1 min, how long does it take for half of the
sugar to dissolve?

The intensity / of light at a depth of x meters below
the surface of a lake satisfies the differential equation
dI/dx = (—1.4)1. (a) At what depth is the intensity half
the intensity /¢ at the surface (where x = 0)? (b) What
is the intensity at a depth of 10 m (as a fraction of /¢)?
(c) At what depth will the intensity be 1% of that at the
surface?

The barometric pressure p (in inches of mercury) at an
altitude x miles above sea level satisfies the initial value
problem dp/dx = (—0.2)p, p(0) = 29.92. (a) Calculate
the barometric pressure at 10,000 ft and again at 30,000
ft. (b) Without prior conditioning, few people can sur-
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47.

48.

49.

50.

51.

52.

53.
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vive when the pressure drops to less than 15 in. of mer-
cury. How high is that?

A certain piece of dubious information about phenylethy-
lamine in the drinking water began to spread one day in a
city with a population of 100,000. Within a week, 10,000
people had heard this rumor. Assume that the rate of in-
crease of the number who have heard the rumor is propor-
tional to the number who have not yet heard it. How long
will it be until half the population of the city has heard the
rumor?

According to one cosmological theory, there were equal
amounts of the two uranium isotopes 23°U and 238U at
the creation of the universe in the “big bang.” At present
there are 137.7 atoms of 238U for each atom of 23°U. Us-
ing the half-lives 4.51 x 10° years for 233U and 7.10 x 108
years for 235U, calculate the age of the universe.

A cake is removed from an oven at 210°F and left to cool
at room temperature, which is 70°F. After 30 min the
temperature of the cake is 140°F. When will it be 100°F?

The amount A(z) of atmospheric pollutants in a certain
mountain valley grows naturally and is tripling every 7.5
years.

(a) If the initial amount is 10 pu (pollutant units), write
a formula for A(z) giving the amount (in pu) present
after ¢ years.

(b) What will be the amount (in pu) of pollutants present
in the valley atmosphere after 5 years?

(c) If it will be dangerous to stay in the valley when the
amount of pollutants reaches 100 pu, how long will
this take?

An accident at a nuclear power plant has left the surround-
ing area polluted with radioactive material that decays nat-
urally. The initial amount of radioactive material present
is 15 su (safe units), and 5 months later it is still 10 su.

(a) Write a formula giving the amount A(¢) of radioactive
material (in su) remaining after  months.

(b) What amount of radioactive material will remain after
8 months?

(c) How long—total number of months or fraction
thereof—will it be until A = 1 su, so it is safe for
people to return to the area?

There are now about 3300 different human “language fam-
ilies” in the whole world. Assume that all these are de-
rived from a single original language and that a language
family develops into 1.5 language families every 6 thou-
sand years. About how long ago was the single original
human language spoken?

Thousands of years ago ancestors of the Native Americans
crossed the Bering Strait from Asia and entered the west-
ern hemisphere. Since then, they have fanned out across
North and South America. The single language that the
original Native Americans spoke has since split into many
Indian “language families.” Assume (as in Problem 52)
that the number of these language families has been mul-
tiplied by 1.5 every 6000 years. There are now 150 Native

54.

5S.

56.
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59.

60.
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62.

63.

64.

American language families in the western hemisphere.
About when did the ancestors of today’s Native Ameri-
cans arrive?

A tank is shaped like a vertical cylinder; it initially con-
tains water to a depth of 9 ft, and a bottom plug is removed
at time ¢t = 0 (hours). After 1 h the depth of the water has
dropped to 4 ft. How long does it take for all the water to
drain from the tank?

Suppose that the tank of Problem 54 has a radius of 3 ft
and that its bottom hole is circular with radius 1 in. How
long will it take the water (initially 9 ft deep) to drain com-
pletely?

At time t = 0 the bottom plug (at the vertex) of a full con-
ical water tank 16 ft high is removed. After 1 h the water
in the tank is 9 ft deep. When will the tank be empty?

Suppose that a cylindrical tank initially containing Vy gal-
lons of water drains (through a bottom hole) in 7" minutes.
Use Torricelli’s law to show that the volume of water in
the tank after + < 7 minutes is V = Vo [1 — (¢/T)]>.

A water tank has the shape obtained by revolving the curve
y = x*/3 around the y-axis. A plug at the bottom is re-
moved at 12 noon, when the depth of water in the tank is
12 ft. At 1 p.M. the depth of the water is 6 ft. When will
the tank be empty?

A water tank has the shape obtained by revolving the
parabola x> = by around the y-axis. The water depth is
4 ft at 12 noon, when a circular plug in the bottom of the
tank is removed. At 1 P.M. the depth of the water is 1 ft.
(a) Find the depth y(¢r) of water remaining after ¢ hours.
(b) When will the tank be empty? (c¢) If the initial radius
of the top surface of the water is 2 ft, what is the radius of
the circular hole in the bottom?

A cylindrical tank with length 5 ft and radius 3 ft is sit-
uated with its axis horizontal. If a circular bottom hole
with a radius of 1 in. is opened and the tank is initially
half full of water, how long will it take for the liquid to
drain completely?

A spherical tank of radius 4 ft is full of water when a cir-
cular bottom hole with radius 1 in. is opened. How long
will be required for all the water to drain from the tank?

Suppose that an initially full hemispherical water tank of
radius 1 m has its flat side as its bottom. It has a bottom
hole of radius 1 cm. If this bottom hole is opened at 1 P.M.,
when will the tank be empty?

Consider the initially full hemispherical water tank of Ex-
ample 8, except that the radius r of its circular bottom hole
is now unknown. At 1 P.M. the bottom hole is opened and
at 1:30 p.M. the depth of water in the tank is 2 ft. (a) Use
Torricelli’s law in the form dV/dt = —(0.6)nr?/2gy
(taking constriction into account) to determine when the
tank will be empty. (b) What is the radius of the bottom
hole?

(The clepsydra, or water clock) A 12 h water clock is to
be designed with the dimensions shown in Fig. 1.4.10,
shaped like the surface obtained by revolving the curve
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y = f(x) around the y-axis. What should this curve be,
and what should the radius of the circular bottom hole be,
in order that the water level will fall at the constant rate of
4 inches per hour (in./h)?

|
I ——
t
=
=3
<

Y=

or

x=g®

1 Water flow

FIGURE 1.4.10. The clepsydra.

Just before midday the body of an apparent homicide vic-
tim is found in a room that is kept at a constant tempera-
ture of 70°F. At 12 noon the temperature of the body is
80°F and at 1 P.M. it is 75°F. Assume that the temperature
of the body at the time of death was 98.6°F and that it has
cooled in accord with Newton’s law. What was the time
of death?

Early one morning it began to snow at a constant rate. At
7 A.M. a snowplow set off to clear a road. By 8 A.M. it
had traveled 2 miles, but it took two more hours (until
10 A.M.) for the snowplow to go an additional 2 miles.
(a) Lett = 0 when it began to snow, and let x denote the
distance traveled by the snowplow at time . Assuming
that the snowplow clears snow from the road at a constant
rate (in cubic feet per hour, say), show that

Qi 1

dt t

where k is a constant. (b) What time did it start snowing?
(Answer: 6 A.M.)

A snowplow sets off at 7 A.M. as in Problem 66. Sup-
pose now that by 8 A.M. it had traveled 4 miles and that by
9 A.M. it had moved an additional 3 miles. What time did
it start snowing? This is a more difficult snowplow prob-
lem because now a transcendental equation must be solved
numerically to find the value of k. (Answer: 4:27 A.M.)

Figure 1.4.11 shows a bead sliding down a frictionless
wire from point P to point Q. The brachistochrone prob-
lem asks what shape the wire should be in order to min-
imize the bead’s time of descent from P to Q. In June
of 1696, John Bernoulli proposed this problem as a pub-
lic challenge, with a 6-month deadline (later extended to
Easter 1697 at George Leibniz’s request). Isaac Newton,
then retired from academic life and serving as Warden
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of the Mint in London, received Bernoulli’s challenge on
January 29, 1697. The very next day he communicated
his own solution—the curve of minimal descent time is an
arc of an inverted cycloid—to the Royal Society of Lon-
don. For a modern derivation of this result, suppose the
bead starts from rest at the origin P and let y = y(x) be
the equation of the desired curve in a coordinate system
with the y-axis pointing downward. Then a mechanical
analogue of Snell’s law in optics implies that

sin .
—— = constant, (1)
v

where o denotes the angle of deflection (from the verti-
cal) of the tangent line to the curve—so cota = y’(x)

(why?)—and v = /2gy is the bead’s velocity when it has

descended a distance y vertically (from KE = %mv2 =

mgy = —PE).
P

N

Q

FIGURE 1.4.11. A bead sliding down a
wire—the brachistochrone problem.

(a) First derive from Eq. (i) the differential equation

dy 2a —y ..

ax = y (i1)
where « is an appropriate positive constant.

(b) Substitute y = 2a sin? ¢, dy = 4asint cost dt in (ii)
to derive the solution

x =a2t —sin2t), y =a(l —cos2t) (iii)

for which t = y = 0 when x = 0. Finally, the sub-
stitution of 6 = 2¢ in (iii) yields the standard para-
metric equations x = a(f —sinf), y = a(l — cos 0)
of the cycloid that is generated by a point on the rim
of a circular wheel of radius a as it rolls along the x-
axis. [See Example 5 in Section 9.4 of Edwards and
Penney, Calculus: Early Transcendentals, Tth edition
(Upper Saddle River, NJ: Prentice Hall, 2008).]

69. Suppose a uniform flexible cable is suspended between

two points (£L, H) at equal heights located symmetri-
cally on either side of the x-axis (Fig. 1.4.12). Principles
of physics can be used to show that the shape y = y(x) of
the hanging cable satisfies the differential equation

d? dy\?
a_y = 1+ _y s
dx? d

where the constant ¢ = T'/p is the ratio of the cable’s ten-
sion T at its lowest point x = 0 (where y’(0) = 0 ) and
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Substitution of x(0) = 90 gives C = —(90)*, so the amount of salt in the tank at time ¢ is

x(t) =290 +1)—

4

(90 +1)3°

The tank is full after 30 min, and when ¢ = 30, we have

of salt in the tank.

m Problems

Find general solutions of the differential equations in Prob-
lems 1 through 25. If an initial condition is given, find the
corresponding particular solution. Throughout, primes denote
derivatives with respect to x.

. xy’
.y +2xy =x, y(0) = -2

.y =0 —-y)cosx, y(r) =2

. (14+x)y +y =cosx, y(0) =1

. xy' =2y +x3cosx

. '+ ycotx = cos x

.y =14+x+y+xy,y0)=0

. xy' =3y 4+x*cosx, y2r) =0

. v/ = 2xy +3x%exp(x?), y(0) = 5
. xy + (2x —3)y = 4x*

(2 +4)y +3xy =x,90) =1

25.

V+y=2,0)=0

Y 4+ 3y = 2xe 3%

xy' 4+2y =3x,y(1) =5
xy +5y =7x2,y2) =5
2xy’ +y = 10/x

xy —y=x,y(1)=7
xy' +y=3xy,y(1)=0
senl By = 23 Dy =
y+y=eXy0)=1
—3y=x3,y(1) =10

2.y =2y = 3e2x2, y(©0)=0

X

4. y'—2xy =e

8. 3xy' +y =12x
10. 2xy’ — 3y = 9x3

d
(x2 + l)d—y +3x3y = 6xexp (—%xz), y(0)=1
X

Solve the differential equations in Problems 26 through 28 by
regarding y as the independent variable rather than x.

26.

28.
29.

30.

dy 3

(1—4xy?)—= =y 27. (x —l—yey)d—y =1
dx dx

d
(1+2xp) =2 = 1 4 y2
dx

Express the general solution of dy/dx = 1 + 2xy in terms
of the error function

2 e
erf(x) = NG /0 e dr.

Express the solution of the initial value problem

dy
2x— =y + 2xcos x,
dx

as an integral as in Example 3 of this section.

y(1) =0

90%

x(30) = 2(90 + 30) — o5 & 202 (Ib)

Problems 31 and 32 illustrate—for the special case of first-
order linear equations—techniques that will be important
when we study higher-order linear equations in Chapter 3.

31.

32,

33.

34.

3s.

(a) Show that
Yel(x) = Ce— /P dx

is a general solution of dy/dx + P(x)y = 0. (b) Show

that
yp(x) = gl [/ (Q(x)ef P(x)dx) dx}

is a particular solution of dy/dx + P(x)y = Q(x).
(¢) Suppose that y.(x) is any general solution of dy/dx +
P(x)y = 0 and that y,(x) is any particular solution of
dy/dx + P(x)y = Q(x). Show that y (x) = yc(x) + yp(x)
is a general solution of dy/dx + P(x)y = Q(x).

(a) Find constants A and B such that y,(x) = Asinx +
B cos x is a solution of dy/dx + y = 2sinx. (b) Use the
result of part (a) and the method of Problem 31 to find the
general solution of dy/dx + y = 2sinx. (c) Solve the
initial value problem dy/dx + y = 2sinx, y(0) = 1.

A tank contains 1000 liters (L) of a solution consisting of
100 kg of salt dissolved in water. Pure water is pumped
into the tank at the rate of 5 L/s, and the mixture—kept
uniform by stirring— is pumped out at the same rate. How
long will it be until only 10 kg of salt remains in the tank?

Consider a reservoir with a volume of 8 billion cubic
feet (ft3) and an initial pollutant concentration of 0.25%.
There is a daily inflow of 500 million ft3 of water with a
pollutant concentration of 0.05% and an equal daily out-
flow of the well-mixed water in the reservoir. How long
will it take to reduce the pollutant concentration in the
reservoir to 0.10%?

Rework Example 4 for the case of Lake Ontario, which
empties into the St. Lawrence River and receives inflow
from Lake Erie (via the Niagara River). The only differ-
ences are that this lake has a volume of 1640 km? and an
inflow-outflow rate of 410 km?3 /year.
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36.

37.

38.

39.

40.

Chapter 1 First-Order Differential Equations

A tank initially contains 60 gal of pure water. Brine
containing 1 Ib of salt per gallon enters the tank at
2 gal/min, and the (perfectly mixed) solution leaves the
tank at 3 gal/min; thus the tank is empty after exactly 1 h.
(a) Find the amount of salt in the tank after # minutes.
(b) What is the maximum amount of salt ever in the tank?

A 400-gal tank initially contains 100 gal of brine contain-
ing 50 1b of salt. Brine containing 1 Ib of salt per gallon
enters the tank at the rate of 5 gal/s, and the well-mixed
brine in the tank flows out at the rate of 3 gal/s. How
much salt will the tank contain when it is full of brine?

Consider the cascade of two tanks shown in Fig. 1.5.5,
with V7 = 100 (gal) and V> = 200 (gal) the volumes of
brine in the two tanks. Each tank also initially contains
50 Ib of salt. The three flow rates indicated in the fig-
ure are each 5 gal/min, with pure water flowing into tank
1. (a) Find the amount x(z) of salt in tank 1 at time ¢.
(b) Suppose that y(¢) is the amount of salt in tank 2 at
time 7. Show first that
dy S5x Sy

dt 100 200’

and then solve for y(¢), using the function x(¢) found in
part (a). (c¢) Finally, find the maximum amount of salt
ever in tank 2.

%

Tank 1
g Volume V,

E Amount x
o Tank 2
Volume V,
g Amount y

)
|

FIGURE 1.5.5. A cascade of two tanks.

Suppose that in the cascade shown in Fig. 1.5.5, tank 1
initially contains 100 gal of pure ethanol and tank 2 ini-
tially contains 100 gal of pure water. Pure water flows
into tank 1 at 10 gal/min, and the other two flow rates
are also 10 gal/min. (a) Find the amounts x(¢) and y(¢)
of ethanol in the two tanks at time ¢ = 0. (b) Find the
maximum amount of ethanol ever in tank 2.

A multiple cascade is shown in Fig. 1.5.6. At time ¢ = 0,
tank O contains 1 gal of ethanol and 1 gal of water; all the
remaining tanks contain 2 gal of pure water each. Pure
water is pumped into tank O at 1 gal/min, and the vary-
ing mixture in each tank is pumped into the one below it
at the same rate. Assume, as usual, that the mixtures are
kept perfectly uniform by stirring. Let x,(¢) denote the
amount of ethanol in tank » at time ¢.

41.

42,

43.

FIGURE 1.5.6. A multiple cascade.

(a) Show that xo (1) = ¢~*/2. (b) Show by induction on

n that
tne—t/z

w0 =

(¢) Show that the maximum value of x,(z) for n > 0 is
My = x,(2n) =n"e " /n!. (d) Conclude from Stirling’s
approximation n! ~ n”e ™" /27 n that M, ~ (27rn)~1/2.
A 30-year-old woman accepts an engineering position
with a starting salary of $30,000 per year. Her salary
S(t) increases exponentially, with S(r) = 30e!/20 thou-
sand dollars after ¢ years. Meanwhile, 12% of her salary
is deposited continuously in a retirement account, which
accumulates interest at a continuous annual rate of 6%.
(a) Estimate A A in terms of At to derive the differential
equation satisfied by the amount A () in her retirement ac-
count after ¢ years. (b) Compute A4(40), the amount avail-
able for her retirement at age 70.

Suppose that a falling hailstone with density § = 1 starts
from rest with negligible radius » = 0. Thereafter its ra-
dius is r = kt (k is a constant) as it grows by accretion
during its fall. Use Newton’s second law—according to
which the net force F acting on a possibly variable mass
m equals the time rate of change dp/dt of its momentum
p = mv—to set up and solve the initial value problem

forn > 0.

d

7, (mv) = mg.
where m is the variable mass of the hailstone, v = dy/dt
is its velocity, and the positive y-axis points downward.
Then show that dv/dt = g/4. Thus the hailstone falls as
though it were under one-fourth the influence of gravity.
Figure 1.5.7 shows a slope field and typical solution
curves for the equation y/ = x — y. (a) Show that ev-
ery solution curve approaches the straight line y = x — 1

v(0) =0,
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1.4 Lecture IV

Quotation: “The highest form of pure thought is in mathematics”,
Plato

Other type of equations which can be solved with exact meth-
ods, notions, real world applications: homogeneous (in terms of
variables) differential equations, Bernoulli differential equations, exact
differential equations, characterization of exactness, reducible to second-
order DE (dependent variable missing, independent variable missing).

1.4.1 Substitution methods

We begin with an example by solving the Problem 55, page 72.

Problem 1.4.1. Show that the substitution v = ax+by+-c transforms the differential

equation g—g = F(az + by + ¢) into a separable equation.

Solution: Let us assume that b # 0. Differentiating the substitution v = ax+by+c

with respect to z, we get % = a+b% and then the equation becomes % = a+bF (v)
y

which is a separable equation indeed. If b = 0 then the equation j—x = F(ax +¢) is

already separable. [ ]

As an application lets work problem 18 on page 71: find a general solution
of (z +y)y = 1. We make the substitution v = z +y. Then & =1 + g—gyc which
turns the original equation into v(v’ — 1) = 1 or vv/ = v + 1. Observe that one
singular solution of this equation is v(x) = —1 for all x € R which corresponds to
y(r) = —x —1for all z € R.

If v(z) # —1 for x in some interval we can write the equation as ;’“, = 1. Equiva-

1
lently, in order to integrate let us write this equation as

/
’ (Y

_ -1
v v+1

Integrating with respect to z we obtain v — In |v + 1| = x 4+ C. Getting back to the
original variable this can be written as z +y — In |z + y + 1| = x + C. Notice that
this could be simplified to y = In |z +y + 1| + C which gives y only implicitly. If we
want to get rid of the logarithmic function and also of the absolute value function
as well, we can exponentiate the last equality to turn it into e¥ = k(x4 y+ 1) where
k is a real constant which is not zero. In order to include the singular solution we
can move the constant to the other side and allow it to be zero: x +y + 1 = kye?,
k1 € R. Some solutions curves can be drawn with Maple and we include some here
(k=1,2 and 1/10).
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k(z+y+1)=e', k=12 %

1.5 Homogeneous DE

The homogeneous property referes here to the function f when writing the DE as
y' = f(x,y). The prototype is actually

y = f(y/).

The recommended substitution here is v = y/x. This implies y(z) = zv(x) so,
differentiating with respect to x we obtain ¢y = v + xv’. Then the original equation
becomes v = (f(v) — v)/x which is a separable DE.

In order to check that a differential equation is homogeneous we could sub-
stitute y = vz in the expression of f(x,y) and see if the resulting function can be
written just in terms of v. As an example let’s take Exercise 14, page 71.

Problem 1.5.1. Find all solutions of the equation yy' + x = /22 + y>.

Solution: One can check that this DE is homogeneous. Let y = zv, where v
is a function of z. Then ¢y’ = v+ xv’ and so our equation becomes zv(v+av') +x =
Va2 4+ x?v?. Assume first that we are working on an interval I C (0,00). Then the
DE simplifies to zvv’ = v/1 +v2 — 1 —v?. Let us observe that v(xz) =0 for all z € I

is a solution of this equation. We will see that this is not a singular solution. So, if
we assume v is not zero on [, say v > 0, the DE is equivalent to #ﬁ = —%
! 1

o ——w 1
V1+v2(V1+v2-1) T’

Using the conjugate we can modify the left hand side to %—W = —% or

v’ v 1
1.29 v, v __Z
( ) v vy 1+ 02 x
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If we integrate both sides with respect to x we obtain In(v) + [ v‘fﬁ =—Ilnz+
C. In the indefinite integral we’'ve got, let us do the change of variables: v = %
This integral becomes [ v\/‘% =— ﬁzﬂ = —Inju+ V1+u? +C =l —
In(v1+v2+ 1)+ C". Hence the DE ([1.29) leads to

2
(1.30) i

e ——
vV1+v2+1

where the constant £ can take any non-negative value. Using the conjugate again
(2) changes into z(v/1 +v? —1) =k or /22 + y?> — x = k. If we solve this for y we

obtain
(1.31) y(x) =~/ (2 + k)k

Let us observe that this function is actually defined on (—k/2,00) if £ > 0. One can
go back and check that v < 0 leads to the choice of

(1.32) y(x) = —/ e+ k)k, x € (—k/2,00).

The two general solutions ((1.31) and (1.32) are all the solutions of the original
equation (the singular solution y(x) = 0 is included in (1.31)) for & = 0.

1.6 Bernoulli DE

The general form of these equations is very close to that of linear DE:

(1.33) Y + P(a)y = Qa)y"

So, we may assume that n is different of 0 or 1 since these cases lead to DE that

we have already studied. The recommended substitution is v = y'=™. This implies
1

y=v1—n and y = ﬁv”/ (1=n)y/. This changes the original equation to

which after dividing by vT-= (assuming is not zero)

——+ P(a)o = Q(a),
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which is a linear DE.

Let us see how this method works with the exercise 26, page 71.

Problem 1.6.1. Find all solutions of the equation 3y*y’ + > = e™*.

Solution: If we put the given equation in the form we get ' + %y = %y‘?
This says that n = —2 and so we substitute v = y3. This could have been observed
from the start. The equation becomes v + v = e ® or (e*v(z)) = 1. Hence
e*v(r) = z + C and then v(z) = (C' 4 z)e ®. This gives the general solution
y(x) = (C + 2)3e™*/3 for all x € R.

1.6.1 Exact equations

We say the equation

(1.34) y = fz,y)
M
is an ezact equation if f(x,y) = — N((9€,y)) and for some function F(z,y) we have
LY
oF OF . o
M(z,y) = a—(m,y) and N(z,y) = a—(m,y). Let us observe that if an equation is
£ Y

exact then F'(z,y(x)) = C is a general solution giving y implicitly: indeed, differen-
tiating this with respect to xz we get g—i(x,y) + %(z,y)y’(m) = 0. This is nothing
but the original equation. There is a condition on M and N that tells us if the
equation is exact or not.

Theorem 1.6.2. Let M and N as before, defined and continuously differentiable on
a rectangle R = {(z,y) 1 a < x < b,c <y < d}. Then the equation is exact

if and only i %—]\;(x,y) = %(x,y) for each (z,y) € R.

Proor: First suppose that the equation ([1.34]) is exact. Then there exists F'
oFr or

differentiable such that M (z,y) = a—(w, y) and N(x,y) = a—(w, y) with f(x,y) =
T Y

M(z,y) oM 0?F ON 0*F

Nz,y) Then oy (x,y) ayax(x,y) and e (z,y) 8ajay(ac,y). For a
function which twice continuously differentiable the mixed derivatives are equal:
0?F 0?F
a (:C7 y) =

yox 0x 0y

(x,y). This is called Schwartz (or Clairaut)’s theorem.
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For the other implication, we define F(z,y) fy (x0,s)ds + ffo M(s,y)ds. We

F F
need to check that M(z,y) = —(z,y) and N(z,y) = g—(x,y) The first equal-
Y

oz

ity is a consequence of the Second Fundamental Theorem of Calculus since the
first part in the definition of F' is constant with respect to x and the second gives
x

d
=— / M (s,y)ds] = M(z,y). To check the second equality we differentiate

F d oM
with respect to y the definition of F: a@y dy[ M(yo, s)ds] +/ aa—y(s, y)ds.

o
(We have used differentiation under the sign of mtegration which is true under

oF
our assumptions.) Using the hypothesis that 8M (:B y) = ];f (z,y) we get i
Y

Nl)+ [ S s0)ds = Ny ) + Niwp) = Nlao,) = Nz .

Example: Let us look at the problem 36, page 72. In this case M(x,y) =
(1 +ye™) and N(z,y) = 2y + xe™. We need to check if the equation M(z,y) +
N(z,y)y’ = 0 is exact. Using the Theorem we see that we have to check that
Gy (@,y) = Gh(z,y). So, Gi(x,y) = (1 +ay)e™ and G (x,y) = (1 + zy)e™. In
order to solve it we use the same method as in the proof of Theorem 3.1. First we
integrate M (x,y) with respect to x and obtain F(z,y) = x + €*¥ 4+ h(y). Then we
differentiate this with respect to y and obtain N(x,y) = 2y + ze™ = xe™ + h/(y).
Hence h(y) = 2y which implies h(y) = y* + C. Then the general solution of this

given equation is x + y* + % + C = 0.

1.6.2 Reducible second order DE

The DE we are dealing with in these cases is of the form

(1.35) F(x,y,y,y") = 0.

In some situations just by making a substitution we can reduce this equation to a
first order one. Case 1. (Dependent variable y missing) In this case we substitute
v =y’ Then the equation becomes a first-order equation.

Case I1. (Independent variable missing ) If the equation is written as F'(y, vy, y") =

0 then the substitution v = ¢’ will give 3’ = L% — 44 4p(d the equation becomes

dy dx dy
F(y,v, 21 ) = 0 which is first-order DE.

Let us see an example like this. Problem 54, page 72 asks to solve the DE

yy” = 3(y)?. If we substitute v = 3/, v = UZU we get va—Z = 3v2. One particular

solution of this equation is v(x) = 0 for all . Assuming that v(z) # 0 for  in some
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interval I we get %/ = % Integrating with respect to y we obtain In [v| = In|y|* + C'.
From here v(y) = ky? with k and arbitrary real constant. Since 3 = ky® we can

integrate again since this is a separable equation to obtain —ﬁ = kx 4+ m where m

_ C

is another constant. This gives the general solution y(x) = Nierers with C,Cy € R.

Homework:
Section 1.6 pages 71-73: 1-23, 34-36, 43-55, 63 and 66;
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Chapter 2

Analytical Methods, Second and
n-order Linear Differential
Equations

2.1 Lecture V

Quotation: “I could never resist a definite integral.” G.H. Hardy

2.1.1 Stability, Euler’s Method, Numerical Meth-
ods, Applications

Equilibrium solutions and stability for first-order autonomous DE, crit-
ical points, stable and instable critical points, bifurcation point, bifur-
cation diagram, vertical motion of a body with resistance proportional
to wvelocity, Euler’s approximation method, the error theorem in Fuler’s
method

Another way of studying differential equations is to use qualitative methods in
which one can say various things about a particular solution of the DE in question
without necessarily solving for the solution in closed form or even in implicit form.
Even for very simple differential equations which are autonomous first-order:

(2.1) v =fy)
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for some continuous function f, which leads to a separable DE, the integration [ %
may turn out to be very difficult. Not only that but these integrals may be impossible
to be expressed in terms of elementary functions that we have reviewed earlier (poly-
nomials, power functions, exponential and logarithmic ones, trigonometric functions
and inverses of them).

One important concept for such an analysis in the case of DE of type (2.1)) is
the following notion:

Definition 2.1.1. A number ¢ for which f(c) =0 is called a critical point of the

DE (2).

If ¢ is a critical point for , we have a particular solution of : y(x)=c
for all x € I. Such a solution is called an equilibrium solution of . For
the following concept let us assume that f is also continuously differentiable on its
domain of definition so that the existence and uniqueness theorem of Cauchy applies.

Definition 2.1.2. A critical point ¢ of is said to be stable if for every e > 0
there exist a positive number 0 such that if |yo — ¢| < 0 then the solution of y(x) of
the initial value problem associated to

(2.2) {y’ = f(y)
y(O) =%

satisfies |y(z) — c| < e for all x > 0 and in the domain of the solution.

Notice that this is a very technical mathematical definition which is saying
that if the initial point where a solution starts is close enough of the critical point
¢ then the whole solution is going to stay close to the corresponding equilibrium
solution at any other point in time (black whole behavior). If this definition is not
satisfied we say that c is unstable.

Let us work the Problem 22, page 97 as we introduce all these related concepts
and techniques.

Problem 2.1.3. Consider the DE iy = y + ky® where k is a parameter. Determine
the critical points and classify them as stable or unstable.

Solution: The equation y + ky® = 0 has in general three solutions y; = 0, ya3 =
++/—1/k. There is only one solution if £ = 0, only one real solution if £ > 0 and
three real ones if k£ < 0.

If £ = 0 there is only one solution y = 0 and if y, is given the initial value problem

1} has unique solution y(x) = ype®, © € R, which has the property lim |y(z)| =
T—00

00, if yy # 0, which shows that y = 0 is unstable.



2.1. LECTURE V 41

If £ > 0 then ¢/(z) > y(z) if y(z) > 0 at least. Then a similar method to that
of solving linear equations shows that y'(x) > yoe® and this implies the y = 0 is
unstable too. In fact one can integrate (2) and check that this is true. The general
solution of

/ k 3
(2.3) {y y+ky

y(O) = Yo

yoe”

is given by y(x) = T (please check!). This solution is defined only for =

satisfying (e*” — 1)kyg < 1. So if yo # 0 then x € (—00,T) where T' = 3 In(1 + 7).
0
Let us observe that lirr% ly(x)| = oo so the point 0 is indeed unstable.
x—>

If £ < 0 then the solution is well defined for all values of z € [0,00). We can write
the expression of y(z) in the form

_ Yo
Ve =1+ kyd) — kyd

y()

which at the limit, as x — oo, is £, /_ik depending upon vy is positive or negative.
This shows that y = 0 is still unstable. On the other hand, one can check that, for
instance, |y(t) — /| < €if Jyo — /=% | < & where 6 is chosen to be smaller than 5-

and % (a = v/—Fk). Similarly for the solution —, /- which shows that both these

critical points are stable. One could come to the same conclusion without solving
the system (2.3). For k < 0 the graph of f(y) = y + ky® as a function of y looks
like: \

\
A\

fy)=y+ky’ k<0

From this graph one can see that if the solution starts close to yo = ,/}k but

below ¥, then the solution is going to have positive derivative. As a result it is going
to increase as long as it is less than yo. In fact, y(x), is not going to reach the value
Yo because that is going to contradict the uniqueness theorem. Hence y(z) is going
to have a limit, say L. One can show that in this case the solution is defined for
all z € [0,00), So, we can let  go to infinity in the original DE and obtain that
lim ¢’ = L + kL>. One can show that lim y' = 0. This implies that L = 1,.

T—00 Tr—00
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Remark: The point £ = 0 is called a bifurcation point. By definition, a
value of a parameter k is a bifurcation point if the behavior of the critical points
(solutions of f(y, k) = 0) changes as k increases. The graph of the points (k, ¢) with
f(c, k) =0 is called bifurcation diagram.

In some other texts, the a critical point which is stable is also called a sink. If
the derivative of f exists at such a point then one checks if f’(¢) < 0 and concludes
that the critical point is a sink or stable. If f’(¢) > 0 then one sees that such a
point is not stable or sometime called source. If f'(c) = 0 or f’(c) doesn’t exist,
the critical point is said to be a node.

Some useful ingredients here are:

Problem 2.1.4. Let g be differentiable on [0,00) such that lim g(z) and lim ¢'(z)

exist. Show that lim ¢'(z) = 0.
T—>00

Problem 2.1.5. Suppose that f is some differentiable function on (a,b) with ¢ €
(a,b) a critical point (f(c) = 0) such that f(y) >0 ify < c and f(y) <0 fory > c.
Show that the initial value problem

(2.4) {y’ = f(y)
y(0) = yo € (a,b)

has a unique solution y(x) defined for all x > 0 and lim y(z) = c.

T—00

Problem 2.1.6. Let k > 0 and f be a differentiable function defined on [0,00) such
that lim [f'(z) + kf(z)] = L. Show that lim f'(x) = 0.

Notice that Problem 0.6 generalizes Problem 0.4.

2.1.2 Vertical motion under gravitational force and air re-
sistance proportional to the velocity

A simple application of this analysis can be done for the case of movement of a body
with mass m near the surface of the earth subject to gravitation and friction to the
air. If one assumes that the friction force is /' = kv and opposed to the direction of
the movement all the time we get the DE:

or
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dv
2.5 —_— = — .
(2.5) = pv+g

One can easily see that v; = 5 = 74 is a stable solution of this differential equation.
This speed is called the terminal speed. Please read the analysis done in the book
for the case the friction is proportional to the square of the velocity. In this case

the terminal speed is \/g :

2.1.3 Euler’s method of approximating the solution of a
first-order DE

Algorithm: Given the initial value problem

Z/(ﬂUO) =%

Euler’s method with step size h consists in using the recurrent formula y.1 = yr +
hf(xo+kh,yx) for k= 0,1,2,....,n in order to compute the approximation y, of the
solution of (2.6) at x = x,. The difference |y(z,) — y,| is called the cumulative
error.

The figure below has been obtained with Maple using Euler’s method with
step size h = 0.001, n = 6000, for the initial value problem

y/ — xz o y2
. [y

Euler’s Method, h=0.001,n=6000
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The exact solution of this DE is difficult to calculate but there is an expression
of it in terms of Bessel functions. Maple 9 doesn’t handle it properly so we cannot
compute the cumulative error. There is a theorem that gives some information
about the cumulative error.

Theorem 2.1.7. Assume that the function f in (@ 1s continuous and differen-
tiable on some rectangle R = [a,b] X [¢,d]. Then there exist a constant C' > 0
(independent of h and as a result, independent of n) such that |y(z,) — yn| < Ch as
long as x, € (a,b), where y, is computed with the Euler’s method with step size h.

This constant C' depends only on the function f and on the rectangle R.
Theoretically this implies that by taking h small enough we can get any accuracy
we want for the solution.

One can obtain better approximations if one uses the improved Fuler’s approz-
imation method or Runge-Kutta method (please see the book).

Homework: For the first test work problems at the first chapter review on page
76.

Section 2.2 pages 96-97: 1-12, 21, 22;

2.2 Lecture VI

Quotation: “If there is a problem you can’t solve, then there is an easier
problem you can solve: find it.” George Pdélya

Second-order linear DE, principle of superposition for linear homoge-
neous equations, existence and uniqueness for linear DE, initial value
problem for second-order DE, linear independence of two functions, Wron-
skian, general solution of linear second-order homogeneous DE, constant
coefficients, characteristic equation, the case of real roots, the case of
repeated roots and the case of pure complex roots.

The type of equations we are going to be concerned with are DE that could
be reduced to

(2.8) Y +p(x)y + q(x)y = f(x),

for some continuous functions p, ¢, f on an open interval I. Recall that if f = 0 then
we called the DE homogeneous.
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An important property for homogenous linear equations is the following:

Theorem 2.2.1. (Superposition principle) If y; and ys are two solutions of
y" + p(x)y + q(x)y = 0, then z(z) = cryi(x) + cayz(x) is also a solution for every
constants ¢; and cs.

Proor. Because yf +p(z)y; +q(z)y1 = 0 and v + p(x)yh +q(x)y2 = 0, we can
multiply the first equation by ¢; and the second by ¢y and then add the two new
equations together. Then we obtain z” 4 p(z)z’ + q(z)z = 0. |

The existence and uniqueness theorem takes a special form in this case.

Theorem 2.2.2. (Existence and Uniqueness) For the initial value problem

Y+ p(x)y +q(z)y = f(x)
(2.9) y(a) = by,
y'(a) = by

assume that p,q and f are continuous on an interval I containing a. Then
has a unique solution on I.

The problem (2.9)) is called an initial value problem associated to a second-
order DE.

Example: Suppose we take the differential equation in Problem 16, page 156: " +
iy’ + m—lzy = 0 and the initial condition y(1) = 3 and /(1) = 2. Then by applying
Theorem 0.2 we know that this initial value problem should have a solution defined
on (0,00). If we take the the two solutions given in the problem y; = cos(Inz)
and y, = sin(Inz) we can use the Superposition Principle to find our solution by
determining the constants ¢; and ¢y from the system:

(2.10) {ﬁyd) +capn(1) = 3

a1y 1(1) + C2?JI2(1) =2

or ¢; = 3, ¢a = 2. This gives y(z) = 3cos(Inz) + 2sin(ln z) which exists on (0, 00),

the largest interval on which p(z) = 1 and ¢(z) = = are defined and continuous.

Definition 2.2.3. Two functions f, g defined on an interval I are said to be linearly
independent on I, if c1f(x) + cog(x) = 0 for all x € I implies ¢; = co = 0.

If two functions are not linearly independent on I, they are called linearly
dependent on /.



46CHAPTER 2. ANALYTICAL METHODS, SECOND AND N-ORDER LINEAR DIFFERENTIAL E

Example I: Suppose f(z) = cos2z and g(z) = cos?z — 5 and I = R. These two

functions are linearly dependent on R since f(x) + (—2)g(x) = 0 for all z € R.

Example II: Let us take f(z) = x and g(z) = || and 2 € T = R. These two
are linearly independent since C)f(x) + Cyg(z) = 0 for all z € R. This implies
Ci+Cy=01if x =1 for instance £ = 1 and —C; + Cy = 0 if £ = —1. This attracts
C7 = Cy = 0 which means that f and ¢ are linearly independent.

Definition 2.2.4. For two differentiable functions f and g on I, the Wronskian
of f and g is the determinant

Wiz = | 1) 40 | = @) - P, st

The next theorem characterizes solutions of second-order DE which are linearly
independent.

Theorem 2.2.5. Let y; and yz be two solutions of y' + p(x)y' + q(x)y = 0 defined
on open interval I, where p and q are continuous. Then y; and ys are linearly
independent if and only if W (y1,y2)(z) # 0 for all x € I.

Proor. (<) Let us assume that W (y;,y2)(z) # 0 for all x € I. By way
of contradiction if the solutions y; and s, are linearly dependent then y; = cys
for some constant c¢. Then W (yy,y2) = y1y5 — ¥iy2 = cyayh — (cy2)'y2 = 0. So, if
W (y1,y2)(x) # 0 for all x € I. This contradiction shows that the two solutions must
be linearly independent.

(=) Assume that y; and y» are linearly independent. This means that c;y; +
coyo = 0 on I implies ¢; = ¢ = 0. We will follow the idea from the Problem 32,
page 156. Since y{ + p(x)yy + q(x)y; = 0 and y§ + p(x)yh + q(z)y2 = 0 we can
multiply the first equation by y, and the second by y; and subtract them. We get
yly2 — 1y +p(x) (y1yh —y2y)) = 0. In a different notation W'(z) = p(x)W (z). This
equation in W is linear with the solution W(x) = Wye/ @9 This implies that
W(x) # 0 if Wy # 0. So, we are done if Wy # 0. Again by way of contradiction let
us assume that Wy = 0. Then W(x) = 0 for all x € I. Hence (y1/y2)" = 0 which
means ¥y, /ys = ¢ or y; () — cyz(x) = 0 for some nonzero constant ¢ and for all = € I
where yo(x) # 0. If yo(t) = 0, for some ¢, then as a corollary of Theorem [2.9) we
cannot have y5(t) = 0 because that will attract y, = 0. Therefore W (¢) = 0 implies
y1(t) = 0 which means y;(z) — cy2(x) = 0 for al x € I and this contradicts the
assumption on y; and ys as being linear independent. It remains that W (z) # 0 for
all z € 1. [ ]

The next theorem tells us how the general solution of a homogeneous second-
order linear differential equation looks like.
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Theorem 2.2.6. If y; and yo are two linearly independent solutions of y” + p(x)y' +
q(x)y = 0 defined on open interval I, where p and q are continuous then any solution
y can be written as y = c1ys + Cals.

Proor. Let us start with an arbitrary solution y. Consider an arbitrary point
xo € I. From the previous theorem we see that W (zg) # 0. Hence by Crammer’s
rule the system

(o)
"(20)

has a unique solution in ¢; and ¢o. Hence y and z = c¢1ys + coys both satisfy the
initial value problem

{01?/1 (o) + c2y2(x0)

=Y
a1y (o) + coyh(xo) =y

w" + p(x)w + g(x)w =0
(2.11) w(zo) = Yo,

w'(x0) = y' (o).
Using the uniqueness property of the solution (Theorem [2.9) we see that the two
solutions must coincide: y = c1y; + co¥s. [ |

Two linearly independent solutions of a second-order linear homogeneous DE
are called a fundamental set of solutions for this DE.

2.2.1 Linear second-order DE with constant coefficients

If the DE is of the form ay” + by’ + cy = 0 we can find two solutions which are
linearly independent by going first to the characteristic equation:

(2.12) ar* +br+c=0

Theorem 2.2.7. (a) If the roots of the equation are real, say ry and r9, and
distinct then two linearly independent solutions of ay” + by’ + cy = 0 are e"* and

. The general solution of the DE is then given by |y(x) = c1e™* + coe"™"|.

72T
62

(b) If the roots are real but 1y = ro = 1 then two linearly independent solutions of
ay” + by +cy =0 are e and xe™. The general solution of the DE is then given by

y(x) = (c1 + caz)e™™|.

(c) If the two roots are pure imaginary ones, say r1o = « + if8 then two linearly
independent solutions of ay” +by +cy = 0 are e®® sin Bz and e** cos fx. The general

solution of the DE is then given by |y(x) = (¢; sin Sz + ¢5 cos fz)e™™ |.
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Proor. We need to check in each case that the given pair of functions form a
fundamental set of solutions.

Case (a) The functions y;(z) = €% and ys(x) = €%, x € R, satisfy the DE,
ay” + by’ + cy = 0, because rq and ry satisfy the characteristic equation (2.12)). The
Wronskian of these two functions is W (yy,y2)(z) = (13 — r1)e™¥72)% £ 0 since we
assume in this case r{ # 7.

Case (b) The two functions this time are y;(z) = €"* and y(x) = xze™*. The
only novelty here is why y, must be a solution: y5(x) = (riz + 1)e™*, yi(x) =
(r?x 4 2ry)e™® and ayy + byy + ¢ = [(ar? 4+ bry + ¢)x + 2ar; +b)] e™® = 0 since
ri =ry = 52. We have W (y1,y2)(x) = €% # 0 for all z € R.

Case (c) Here yi(z) = e sin fz and ys(x) = e* cos fx. If we calculate y(z) =
(asin Bz + Bcos fx)e™ and ) (z) = [(a? — %) sin Sz + 28 cos Bx] €**, and ay] +
by, + cy1 = [(a(a? — B?) + ba + ¢) sin Bz + (2aa3 + bB) cos fx] e*®. But we know
from the quadratic formula that o« = =2 and 8 = —““‘;2_172. Hence a(a?— %) +ba+c =

2a
0 and 2aa + b = 0 which in turn implies ay] + by; + ¢ = 0. Similarly one can check

that ayl +bys + cys = 0. The Wronskian is W (y, y)(z) = —20e** # 0 for all z € R
(in this case 8 # 0). u

Examples: Problem 34, page 156. The DE is y” 42y’ — 15y = 0 whose characteristic
equation is 72 4+ 2r — 15 = 0. This has two real solutions 7, = —5 and r, = 3. Hence
the general solution of this equation is y(x) = c1€3® + e, z € R.

In Problem 40, page 156 the DE is 9y” — 12¢y/ + 4y = 0. The characteristic
equation is 972 — 12r + 4 = 0 whose solutions are 7| = ry = % Hence the general
solution of this DE is y(z) = (c1x + ¢)e?*/3, x € R.

If the DE is i’ + 4y’ + 13y = 0 then the characteristic equation 7% +4r +13 = 0
has pure complex roots r; 3 = —2 £ 3¢. Therefore the general solution of the given
differential equation is

y(x) = (c18in 3z + ¢y cos 3z )e 7.

Homework:

Section 3.1 pages 156-157: 13-16, 24-26, 31-42, 51;

2.3 Lecture VII

Quotation: “If a nonnegative quantity was so small that it is smaller
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than any given one, then it certainly could not be anything but zero. To
those who ask what the infinitely small quantity in mathematics is, we
answer that it is actually zero. Hence there are not so many mysteries
hidden in this concept as they are usually believed to be. These supposed
mysteries have rendered the calculus of the infinitely small quite suspect
to many people. Those doubts that remain we shall thoroughly remove
in the following pages, where we shall explain this calculus. 7 Leonhard
Euler

Superposition Principle for n-order linear homogeneous DE; FExistence
and uniqueness for n-order linear DE; Linearly independent and linearly
dependent set of functions; Wronskian of a set of n, (n — 1)-times dif-
ferentiable functions; Characterization theorem of independent solutions;
General solutions of an n-order homogeneous linear DE; Complementary
solution y. and particular solution vy, of an n-order linear DE, Funda-
mental set of solutions of an n-order homogeneous linear DE; General
solutions of an n-order linear DE, n-order linear homogeneous DE with
constant coefficients

This lecture is basically a generalization of the previous one. Let us fix n a
natural number greater or equal to 2. We are assuming that the n-order linear DE
has been reduced to the form:

(2.13) Y™ 4+ (2)y Y 4+ 4 pa2)y = fla),

where py, po, ..., pn, f are continuous on an open interval /. The homogeneous DE
associated to (4.5)) is

(2.14) y™ 4 (w)y(”_l) + ..+ pu(z)y = 0.

As before an important property for the homogeneous case is the principle of super-
position:

Theorem 2.3.1. (Superposition Principle) If yi, k = 1...n are solutions of then

2.14)) then the function z(x) = chyk(:v), x € I is also a solution of (2.14}) for
k=1
every value of the constants ci, k = 1...n.

The proof of this is following exactly the same steps as in the case n = 2. [ |

The existence and uniqueness theorem needs to formulated in the following way.
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Theorem 2.3.2. (Existence and Uniqueness) For the initial value problem

(2.15) {y(") +p1(2)y "D+ L pa(a)y = f(2)

y(a) = by, y'(a) = by, ...,y V(a) =

Y

assume that py,pa,...,Pn, f are continuous on an interval I containing a. Then

has a unique solution on I.

The problem ([2.15) is called the initial value problem associated to ({4.5]).

Example: Suppose we take the differential equation in Problem 20, page 168:
23y" + 62%y" + 4wy’ — 4y = 0 and the initial condition y(1) = 1, ¢/'(1) = 5,
y”(1) = —11. We can rewrite the equation as y"” + gy” + :;%y' — %y = 0.

Then by applying Theorem we know that this initial value problem should
have a solution defined on (0,00). If we take the three solutions given in the prob-

lem’s statement: y; = x, yp = a% and y3 = h;—f We can use the Superposition
Principle to find our solution by determining the constants ¢;, ¢s and c3 from the

system:

c1yl) + coya (1) + csys(1) =1
1’1 (1) + 2y (1) 4 esy/3(1) =5
a1y’ (1) + cay”y(1) + esy”3(1) = —11

or
c1+ co =1
C1 — 202 +c3 = 5
6cy — Hez = —11.
Solving this system of 3 x 3 linear equations we get ¢; = 2, co = —1 and ¢35 = 1.

Inz

This gives the unique solution of our initial value problem y(z) = 2z — & + 2f
which exists on I = (0,00), the largest interval on which py, ps, p3 are defined and
continuous and of course containing the initial value for z (1 € I).

Definition 2.3.3. A set of functions fi., k = 1...n, defined on an interval I, is said

to be linearly independent on I, if chfk(as) =0 for all x € I implies ¢, = co =
k=1

..=c,=0.

If a set of functions is not linearly independent on I, the set is called linearly
dependent on /. By negation of the above definition we see that a set of n functions
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is linearly dependent on [ if there exist ¢, not all zero such that Z e fr(z) = 0 for

k=1
all z € 1.

Example: Suppose fi(z) = sinz, fo(z) = sin3z, ..., fu(z) = sin(2n — 1)z
- 2
sin nx
and fip(z) = SR
since fi + fo+ fs+ ... + fu — fur1 = 0 (please check!).

Definition 2.3.4. For n functions, f1, ...,fn, which are (n — 1)-times differentiable
on I, the Wronskian of fi, ..., f,. is the function calculated by the following deter-
minant

. These (n+1) functions are linearly dependent on (0, 7/2)

h@) ) fal)
Wi gt = | B O e
A7) V@) e 2 (@)

The next theorem characterizes a set of n solutions of an n-order homogeneous
linear DE to form a linearly independent set of functions.

Theorem 2.3.5. Let yy, yo,..., yn be n-solutions of . Then y1, ya,..., yp forms
a set of linearly independent functions if and only if

W(yby%'“ayn)(x) 7£ 0
forall x € 1.

Proor. (<) For sufficiency let us proceed as before (in the case n = 2) using
an argument by contradiction. If the solutions ¥y, ¥s,..., ¥y, are linearly dependent
then >, cxyx = 0 for some constants ¢ not all zero. Then W (y1, ys, ..., yn) = 0
because the determinant has one column is a linear combination of the others. So,
if W(y1,vy2,...,yn)(x) # 0 for all € I then the set of solutions must be linearly
independent.

(=) For necessity, let us assume the solutions yi,ys,...,y, are linearly independent
and again by way of contradiction suppose that their Wronskian is zero for some
point a € I. This means that the following homogeneous linear system of equations
in ci,co,...,Cp

ayi(a) + caya(a) + ... + cuyn(a) =0
1y (%) + cayp(®) + o + cuyy (2) = 0

(2.16)

eyt V(@) + ey V(@) + o+ eyt V(@) =0,
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has a non-trivial solution. We take such a non-trivial solution, cy,cs, ..., ¢,, and

consider the function
n

) = 3 uanls)
k=1
which by the Superposition Principle is a solution of (2.14]). Since (2.16]) can be
written as z(a) = z'(a) = ... = 2" Y(a) = 0 we can apply the uniqueness of
solution (Theorem ) and conclude that z = 0. But that contradicts the fact
that y1,ys,...,4, are linearly independent. [ |

Example: The equation ™ = 0 has n linearly independent solutions: y; = 1,
yo(z) =z, y3(x) = 22, ..., y, = 2" on any given interval I since the Wronskian of
these functions is equal to 1!12!...(n — 1)! for all x € I (please check !).

The next theorem tells us how the general solution of a homogeneous n-order
linear differential equation looks like.

Theorem 2.3.6. Ify1,ys, ..., yn aren linearly independent solutions of defined
on the open interval I, then any solution z of can be written as z(x) =

n
chyk(x), x € I, for some constants ci, k = 1...n.
k=1

Proor. The proof is the same as in the case n = 2. Let us start with an
arbitrary solution z. Consider an arbitrary point a € I. From the previous theorem
we see that W (yi, ...,y,)(a) # 0. Hence by Crammer’s rule the system

cyi(a) + cayz(a) + ... 4 calyn(a) a)

(2.17) ayy (@) + cys(x) + ... + ey (x) = 2'(a)

ey (@) + oy (@) 4 o+ ey (0) = 207D (a),
has a unique solution for ¢, ¢y, ...,c,. Again if we denote w(z) = > ,_, cxyx(x),
x € I, then w is a solution of (2.14) and satisfies the initial conditions w(a) = z(a),
w'(a) = 2'(a), ...w" V(a) = 2 Y(a). Again by Theorem there exist only
one such solution. Therefore z = w. [ |

A set of n linearly independent solutions of a n-order linear homogeneous DE
is called a fundamental set of solutions for this DE. So, in solving such a DE
we are looking for a fundamental set of solutions. If the differential equation is not
homogeneous we have the following characterization of the general solution.

Theorem 2.3.7. Ify1, o, ..., yn aren linearly independent solutions of defined
on the open interval I, and y, is a particular solution of , then any solution z
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of can be written as

2(z) = yp(x) + chyk($)> r el

for some constants ¢, k = 1...n.

Proor. If y, is a particular solution of (4.5]) then z — y, is a solution of ([2.14]).
Hence by Theorem [2.3.6 z(z) — y,(z) = > ¢_; cxyr(2), € I, for some constants
cr, k=1..n. [ |

Definition The function Y, _, cxyx(z) is called a complementary function as-
sociated to (|4.5)).

2.3.1 Linear n-order linear DE with constant coefficients

We are going to study the particular situation of (4.5)) or (2.14) in which the equation
is of the form

(2.18) aoy™ + a1y Y + .+ a,y = 0.

where a;, are just constant real numbers.

As in the case n = 2 the discussion here is going to be in terms of the solutions
of the characteristic equation:

(2.19) agr” +ar™t+ ... +a, =0.
Theorem 2.3.8. A fundamental set of solutions, S, for can be obtained using
the following rules

(a) If a root r of the equation 1s real and has multiplicity k then the contri-
bution of this root to S is with the functions

et e, ... ah e,

(b) If a root v = a + ib of the equation is pure complex (i.e. b # 0) and has
multiplicity k then the contribution of this root to S is with the functions

€™ cos bx, €% sin bz, xe® cos bx, xe®® sin bz, ..., £ e cos bx, ¥ e sin bx.
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A not very difficult proof of this theorem can be given if one uses an unified
approach of the cases (a) and (b) and employing complex-valued functions instead
of real-valued ones.

Examples: Problem 12, page 180. The differential equation is y¥ —3y® +3y” —y/ =
0. The characteristic equation is r* —3r3+3r% —r = 0. The roots of this equation are
r1 = 1 with multiplicity 3 and ro = 0. Hence the general solution of this equation is
y(z) = (1 + cor + c32%)e® + ¢4

Problem 18, page 180. The differential equation is y¥ = 16y. The associated
characteristic equation is 7* — 16 = 0. The roots of this equation are ry o = +2 and
r34 = +2i. Therefore the general solution of this DE is y(z) = c1e** + cpe™** +
€3 €08 2x + c48in 2z, x € R.

Homework:
Section 3.2 pages 168-169, 14-20, 27, 28-30, 32-36, 43, 44;
Section 3.3 pages 180-181, 1-20, 24-26, 30-32, 34-36, 45, 46, 50;

2.4 Lecture VIII

Quotation: “To divide a cube into two other cubes, a fourth power or in
general any power whatever into two powers of the same denomination
above the second is impossible, and I have assuredly found an admirable
proof of this, but the margin is too narrow to contain it.” Pierre Fermat

Topics: Mechanical vibrations (damped, undamped, free, forced, ampli-
tude, circular frequency, phase angle, period, frequency, time lag, critical
damping, overdamped, underdamped), nonhomogeneous equations, unde-
termined coefficients, variation of parameters

Suppose we have a body of mass m attached at one end to an ordinary spring.
Hooke’s law says that the spring acts on the body with a force proportional to the
displacement from the equilibrium position.

Denote by x this displacement. Then this force is Fy = —kx where k is called
the spring constant. Also let us assume that at the other end the body is attached
to a shock absorber that provides a force that is proportional to the speed of the
body: F, = —c‘i—f. The number c is called the damping constant. If there is also
an external force F, = F(t) then according to the Newton’s law:



24. LECTURE VIII 95

d*x

F:Fs—l—Fr—i—Fe:mﬁ

(2.20) T = P
' dt2 dt N '

Some terminology here has become classic: if we ignore all friction forces, i.e.
¢ = 0 we say we have an undamped system and it is called damped if ¢ > 0.
If the exterior force is zero we say the system is free and if the exterior forces are
present the movement is called forced motion.

2.4.1 Free undamped motion

We have basically the equation

d*x
which has the general solution
x(t) = Acoswyt + Bsinwot,

where wy = \/k/m called the circular frequency. This can be written as

(2.22) x(t) = C cos(wot — ),
where C' = /A% + B? is called the amplitude and

(arctcm(g) of A, B>0,

T+ arctan(£) if A <0,

(2.23) a = 2r+arctan(8) if A>0 and B <0,
/2 if A=0 and B>0

(37/2 ifA=0 and B <0,

is called the phase angle. The period of this simple harmonic motion is

simply T = Z—Z The physical interpretation is the time necessary to complete one

full oscillation. The frequency is defined as the inverse of T, i.e. v = %, is usually

measured in hetzs (Hz) and measures the number of complete cycles per second.
The time lag is the quantity = = represents how long it takes to reach the first
time the amplitude.
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2.4.2 Free damped motion

The equation (4.5)) becomes:

(2.24) 2" + 2px’ 4+ wiz = 0,
where wy is as before and p = 5. The characteristic equation has roots 715 = —p+

V/p? — wi. As we have seen this leads to a discursion in terms of the discriminant

; 2 2 _ 2—4mk
of the equation p* —wy = “ 5
2vVkm. If ¢ > ¢, we say the system is over-damped in which case z(t) — 0 as

t — oo since the general solution is

. We have a critical damping coefficient for c.. =

x(t) = Ae"' + Be™' t € R.

There are no oscillations around the equilibrium position and the body passes
through the equilibrium position at most once.

If ¢ = ¢, the system is critically-damped and the general solution is of the
form

z(t) = (A+ Bt)e, t e R.

and as before z(t) — 0 as ¢ — oo and again the body passes through the equilibrium
position at most once.

If ¢ < ¢, we say the system is under-damped. The general solution in this
case 1s

z(t) = e P(Acoswit + Bsinwit) = e * cos(wit — a),

. . . A/ 2 . .
using the same notations as before. In this case, w; = % is called circular
pseudo-frequency, and T} = Z—’I is its pseudo-period.

2.4.3 Nonhomogeneous linear equations, undetermined co-

efficients method

In order to determine a particular solution of a nonhomogeneous linear equation of
the form
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(2.25) apy'™ + ary" TV + .+ ay = f(w),

in special situations one can try a solution of a certain form. This method applies
whenever the function f is a finite linear combination of products of polynomials,
exponentials, cosines or sines. One needs to apply two rules.

Rule 1: If none of the terms of the function f contains solutions of the homogeneous
DE associated to , then the reccomended function to try is y, a combination of
the terms in f and all their derivatives that form a finite set of linearly independent
functions.

Example 1: Let us suppose the DE is y® +1 = sin z+¢®. Since the complementary
solution of this equation is y, = aje™® + [ag cos(xv/3/2) + as sin(zv/3/2)]e*/? we can
try a particular solution to be y = ¢;sinx + ¢y cosz + cze”. After substituting in
the equation we get (co — ¢1)cosz + (co + ¢1)sinx + 2cze” = sinx + e*. So, it
follows that ¢; = ¢ = ¢3 = 1/2. So, the general solution of the given equation is
y(z) = a1e™ + [as cos(zv/3/2) + az sin(zv/3/2)]e*/? + (sinx + cosz + e7)

Example 2: Suppose the DE is ¢ 4 2y — 3y = 2%e?*. Because the complementary
solution of this equation is 3, = a;e® + ase > we can take as a particular solution
yp = (a2® + cr + c3)e**. Since y, = [2c127 + (2¢1 + 2c2)2 + ¢o + 2c3]e*” and
yy = [4c1 + (8¢ — 1 + dep)x + 2¢1 + 4ey + 4eg)e™, we see that y” + 2y — 3y =
[Bera?® 4 (12¢y + Bea)x + 261 4 6¢2 4 5es)]e” = a2 Therefore ¢; = £, ¢; = 52 and
c3 = 2% Thus the general solution of the given equation is y(z) = aie” + age™>* +
2522 — 60z + 62 ,,

125 ©
Rule 2: If the function f contains terms which are solutions of the homogeneous
linear DE associated, then one should try as a particular solution, y,, a linear
combination of these terms and their derivatives which are linearly independent
multiplied by a power of z, say x°, where s is the smallest nonnegative integer
which makes all the new terms not to be solutions of the homogeneous problem.

Example 3: Let us assume the differential equation we want to solve is y”+2y'+y =
z?e™®. So we need to determine the coefficients of the particular solution y, =
(c12* + co2® + c3a®)e™. After a simple calculation we get ¢; = 55 and ¢, = ¢35 = 0.
Example 4: Suppose we are given the DE y*) — 4y®) 4+ 6y” — 4y/ + y = e*sinz.
The complementary solution is y. = (a; + asx + asz? + a43:3)e“7 we need to look
for a particular solution of the form y, = (¢; sinx + ¢o cosz)e®. If we introduce the
differential operator D = % then the equation given is equivalent to (D — 1)ty =
e”sinz and we are looking for a particular solution y, = u(x)e®. Since (D — 1)y, =
(Du)e” (please check!) we see that (D — 1)*y, = (D*u)e® = (¢1 sinx + ¢y cos x)e” so
cp=1and ¢y =0.
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2.4.4 Nonhomogeneous linear equations, Variation of pa-
rameters method

We are going to describe the method in the case n = 2 but this works in fact for the
n-order linear nonhomogeneous DE.

Theorem 2.4.1. A particular solution of the differential equation y" + p(x)y" +
q(z)y = f(x) is given by

ya(2) f(2)
Wy, y2) ()

yi(x)f(x)

(2.26) Yy =~ () W (y1,y2)(z)

dr + ys(x) dz,

where y, and ys is a fundamental set of solutions of y" + p(x)y’ + q(z)y = 0.

Proor. We are looking for a solution of the form y, = u1(2)y () +uz(z)ys(x).
Differentiating with respect to x we obtain y, = ujy; + uhys + u1y] + usyh. We are
going to make an assumption that is going to simplify the next differentiation:

(2.27) uyyr + uyys = 0.

Hence, y, = ujy; + upyy + uryy + ugyy and then yy + p(x)y, + q(2)y, = ui(yy +
p(2)y) 4+ q(x)y1) +ua (s + p(2)yh + q(x)y1) + uhyy + ubyh = f(x). Thus this reduces
to

(2.28) uyyy + uayy = f(x).
: . y2(z) f ()
Using ([2.27)) and (2.28)) to solve for v/ and w}, that gives u)(z) = ——————+*— and
@5 ' ? (@) W (y1, y2) (2)
Yi\x)Jj\x . .
uhy (1) = ——————+— which gives ([2.26]. [
) W ) (0)

Example: Let us work Problem 58, page 208. The DE is x%y” — 4ay/ + 6y = 2.
Dividing the equation by x? we get vy —4y' /x+6y/x? = z. So, we have p(z) = —4/x
and q(z) = 6/2% and f(x) = . Two linearly independent solutions are given: y; =
2?2 and y, = 23. We have W (y1, y2)(z) = 32* — 22?1 = 21 #£ 0 for € (0,00). Then

uy(z) = —% = —1 which gives uj(x) = —z and u)(z) = _Wgzéf);;()ﬂa) =1/z
which implies us(x) = Inz. Therefore a particular solution of this equation is

yp = 2*(Inz — 1) with z € (0, c0).

Homework:
Section 3.4 pages 192-193, 1-4, 13, 15, 16, 32, 33;
Section 3.5 pages 207-208, 1-20, 31-40, 47-56, 58-63.
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2.5 Lecture IX

Quotation: “Finally, two days ago, I succeeded - not on account of my
hard efforts, but by the grace of the Lord. Like a sudden flash of light-
ning, the riddle was solved. I am unable to say what was the conducting
thread that connected what I previously knew with what made my success
possible.” Carl Friedrich Gauss

Topics: Forced Oscillations, Beats, Resonance, Boundary Value Prob-
lems

2.5.1 Undamped Forced Oscillations

In the previous lecture we studied the mechanical vibrations of a body under the
action of a spring, damped forces and exterior forces. The DE was:

(2.29) me— + ¢ 4 ka(t) = F(1).

Now, we assume the exterior force F'(t) is of the form F(t) = Fycoswt and the
damping coefficient ¢ = 0. The differential equation that we need to study is of the
form

(2.30) mz” + kx = Fy cos wt,

which admits as a complementary solution z.(t) = ¢ coswgt + cosinwyt, where

Wy = \/% . First let us assume that w # wy. Then, to find a particular solution of

(4.5]) we try x,(t) = A coswt using the undetermined coefficient method (no term in
sinwt is needed as we can see from the following computation):

— Amw? coswt + Ak coswt = Fy coswt,

Fo o Fo/m

Fme? = et Therefore, the general solution of (4.5)) is

which implies A =

cos wt.

z(t) = c1 coswot + crsinwpt + —5———

This shows that the solution is a combination of two harmonic oscillations having
different frequencies:
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F
(2.31) x(t) = C cos(wot — ) + wgo—/ﬂ(; cos wt.

where C' = /3 + ¢3 and « is defined by |D but some notation has changed so
we update it here:

arctan(2) if ci,c2 >0,
T+ arctan(2) if o <0,

o =
27r—|—arct(m(i—f) if >0 and c2<0,7/2 ifc;=0 and c3 >0
37/2 ifc; =0 and c3 <O0.
2.5.2 Beats

If the amplitude C = /% + 3 = J;’—% and the phase a is zero if w > wy or 7 if
0

w < wp, which can be accomplished by imposing the initial condition z(0) = 2/(0) =

0, then the general solution can be written as

Fo/m
t) = t— t
x(t) pra— (cos wt — cos wyt)
or
2F —w)t t
x(t) = 2 0_/752 sin (o 5 w) sin (o ;—w) :

If we assume that the two frequencies are close to one another (i.e. w = wyp) the
expression above explains the behavior of the solution in some sense. We have a
product of two harmonic functions, one with a big circular frequency, (wo + w)/2,
and the other with a smaller one |wg — w|/2 which gives the phenomenon of beats.
The graph below is the graph of a function of this type: f(t) = sin(¢)sin(30¢) on
the interval ¢t € [—27, 47].

e e
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2.5.3 Resonance

Suppose that we have w getting closer and closer (within any given ¢ > 0) to wy.

Then A(t) = WFQO_/ 3 goes to infinity. This is the phenomenon of resonance. In fact
0

a particular solution of the problem (4.5 in the case w = wy is x,(t) = tsinwyt. The
graph of the of a function of this type is included below:

“‘ N “ .

Yivin
\/ VY V)

N /L\./,‘f\ A//A

!

This phenomenon is considered to be the explanation of a lot of disasters like the one
that happened in 1940 with the Tacoma Narrows Bridge near Seattle. It seeamed
like the exterior forces created by the wind created exactly this kind of explosion of
the amplitude of the oscillations in the vertical suspension cables. Another classical
example is the collapse of the Broughton Bridge near Manchester in England of 1831
when soldiers marched upon it.

2.5.4 Endpoint problems and eigenvalues

We are concerned with second order linear and homogenous DE which have a special
type of initial conditions. One such endpoint problem is:

y' +p(@)y + Agz)y =0
(2.32) a1y(a) + agy'(a) =0
b1y(b) + bay'(b) = 0,

where a # b. In general only the trivial solution y = 0 satisfies (2.32). But for
some values of the parameter A the problem may have non-zero solutions.
These values are called eigenvalues and the corresponding functions are called
eigenfunctions. A general method to solve is to write the general solution
of the DE as y = Ayi(x,\) + Bya(z, A), where y; and ys is a fundamental set of
solutions which is also going to depend of A\. We impose the two initial boundary
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conditions and rewrite these equations as a system in A and B:

a1 (M)A + Bi(A)B =0
(2:33) {aQ()\)A + fo(M)B =0

This system in A and B has a non-trivial solution if and only if
(2.34) a1(A)B2(A) — az2(A)Bi(A) = 0.

One solves this equation and obtains the eigenvalues of (2.32)).

Example: Let us work Problem 6, page 240. The DE is y” + Ay = 0 and the
boundary conditions are y'(0) = 0 and y(1) +¢'(1) = 0. We are given that all
eigenvalues are nonnegative, so we write A = a?.

(a) We have to show that A = 0 is not an eigenvalue. If by way of contradiction
we assume it is, then some non-zero solution of our problem must exist: y(z) =
A+ Bz, 0 =9'(0) = B and then 0 = y(1) + ¢/(1) = A which is a contradiction.

(b) We need to show that the eigenvalues of this problem are the solutions in
A of the equation

1
tan\/_: ﬁ

Let y(z) = Acosat+ Bsinat be the general solution of our DE without the bound-
ary conditions. Since y'(0) = 0 we have 0 = (—aAsinat + Bacos at);—g or B = 0.
Then y(1) + ¢/'(1) = 0 implies Acosa — Aasina = 0. Since we assume there exit a
non-zero solution, we must have A # 0. Therefore o must satisfy cosa —asina =0

or tana = é Corresponding eigenfunctions are y(x) = A cosax. Since a picture is

worth a thousand words let us include the graph of A\ — tanv/\ and A — —= for

v
A > 0.

Homework:
Section 3.6 page 219 Problems 21, 22;
Section 3.8 page 240 Problems 1-6, 13, 14.



Chapter 3

Systems of Differential Equations

3.1 Lecture X

Quotation: “We [he and Halmos| share a philosophy about linear al-
gebra: we think basis-free, we write basis-free, but when the chips are
down we close the office door and compute with matrices like fury. Paul
Halmos: Celebrating 50 Years of Mathematics.” Irving Kaplansky

3.1.1 A non-linear classical example: Kepler’s laws of plan-
etary motion

After analyzing observations of Tycho Brache, Johannes Kepler arrived to the fol-
lowing laws of planetary motion:

1. The orbits of planets are ellipses (with the sun in one of the foci).

2. The planets move in such a way on the orbit, that their corresponding ray wipes
out an area that varies at a constant rate.

3. The square of the planet’s period of revolution is proportional to the cube of the
major semi-axis of the elliptical orbit.

We are going to make an assumption here which is not very far from what it
happens in the reality (neglect the influence of the planet in question on the sun).
The sun contains more than 99% of the mass in the solar system, so the influence of
the planets on the sun could be, on a first analysis, neglected. Intuitively it is not
hard to believe that the planet X is moving in a fixed plane although this is also a

63
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consequence of the movement under the gravitational field. Let us take the origin
of the coordinates in this plane centered at the sun.

The position vector corresponding to the planet X is denoted here by T =
— — — —
x(t)i +y(t)j where i = (1,0) and j = (0,1). The distance between the sun and
the planet X is r = /()2 + y(t)?. According to Newton’s law the planet X moves
under the action of a force which is inverse proportional to the square of the distance
r. The law can be written as a differential equation in the following way:

1 7 = k?

We are going to derive Kepler’s laws from (3.1)). First let us observe that (3.1) is
just the vectorial form of the following second-order non-linear autonomous system
of differential equations:

i
"— _fo___ %
52 N
) "n— _ L Y
Yy (22 4 42)3/2"

It is really a significant fact that this can be reduced to a differential equation that we
know how to solve. To see this, let us first introduce polar coordinates, by assuming
that the trajectory is written in polar coordinates, r = r(6), and we consider two
unit vectors that will help us simplify the calculations:

— = .7
u = cosfi +sinfj
and
— .o 7
v =—sinfi +cosfj.
It is easy to check that U= 0, and these two vectors clearly depend of time
because @ is. Differentiating these two vectors with respect to time we get

— — —
dv — (—sinfi +cosfj)% :?d—f
(3.3) and
— — —
v = (—cosfi —sinfj)%Y = —u.

Since 7 = ru after differentiating this equality, we obtain

dr —r'z_f+rda —7"1_L)+7“5>d6
dt dt dt’
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Differentiating one more time and using (3.3) we get:

=7r"u+2r'v— —ru yr +ro—

e dt

ez dt dt dt? Y

Identifying the coefficients of u and v in the above relation we obtain

6.4 { ) -

db d?0
27‘/5 + TW =0.

2r ~db H<d9>2 ~d?0

or

The second relation in (3.4) is equivalent to 4(r?9¢) = 0 (r # 0). This means

7‘2% = h for some constant h. This proves the second Kepler’s law since
dA  dAdb , r(0 + Af)r(0)sin(Af)] dd 1 ,df h
_ = — = 1m —_— = =T — = —,
dt do dt A0 2A0 a2 dt 2
. . o 1
The first equation in 1) can be transformed using the substitution r = —
z
d 1 dzdb d
and changciirglg the inccllfpzzdent varia;le to 6 instead of ¢: d_:; = _?d_ZE = — d—;
and then d_tz = — d_¢92£ = _h222d_9§ which gives
d*z 1
_h22___h24: k?2
2 :
Equivalently, this can be written as
d*z k
(3.5) 202 +z= 2
As we have seen the general solution of this is z = Acosf + Bsinf + % =
(1 + ecos(d — o)) where e = %\/A2 + B2, cosa = ﬁ and sina = %.
This gives
L
3.6 = .
(3:6) " 1+ ecos(d — )
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which represents an ellipse if the eccentricity e satisfies 0 < e < 1, a parabola if
e = 1 or a hyperbola if e > 1. Since the orbits of the planets are bounded it must
be the case that e < 1. Comets, by definition, are having parabolic or hyperbolic
orbits. [So, according to this definition, Halley’s comet is actually not a comet.]
This proves the first Kepler’s law.

To derive the third Kepler’s law, let us integrate the area formula % = h/2
over the interval [0,7], where T is the period of the orbit. Then we get hT/2 =
Area(Ellipse), but the area of an ellipse is equal to wab, where a and b are the two

semiaxes. The big axis is a = (l%e +:2)/2=:% and b= \/IL_7 This means that
K272 w24

= ey From here we see that
T _ 47r2La3 _ 42 e
h? k
or
T? o Ar tant
poi i constant,

which is the third Kepler’s law.

3.1.2 Linear systems of differential equations

Our general setting here is going to be
(3.7) (1) = P(t)x(t) + f (1)

where P(t) is a nxn matrix whose coefficients are continuous functions on an interval
I, x(t) = [x1(t), 22(t), ..., z,(t)]" is the column vector of the unknown functions and
f(@t) = [f1(t), fa(t), ..., [n(t)]" is a vector-valued function assumed continuous on I as
well.

Theorem 3.1.1. (Existence and uniqueness) The initial value problem

38) {x’(t) = P(B(t) + /(1)

with a € I has a unique solution defined on I.

We notice here that the number of initial conditions in (4.2)) is equal to the number
of unknowns.
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Theorem 3.1.2. (Principle of superposition) If yi, y2, ..., y, are solutions of
the homogeneous problem associated to (3.7), i.e. 2'(t) = P(t)x(t), then the vector

function y = Z Ry 18 also a solution for every values of the constants cy.
k=1

Definition 3.1.3. As before, we say that a set of vector-valued functions, {f1, fa, .-, fx},

k
is called linearly independent if Y c;fi(t) =0 for all t € I, implies ¢;=0 for all
=1

1=1...k.

For a set of n vector valued functions, y1,...,y,, the Wronskian in this case,
W(yi,...,yn), is constructed as the determinant of the matrix (y;x);x=1., Where
Yj = [Y1j; Yajs -, Yng)'. We have a similar characterization of linear independence.

Theorem 3.1.4. If the system x'(t) = P(t)x(t) admits yy, ...., Yy, as solutions then
these are linearly independent if and only if the Wronskian asssociated to them,
W (Y1, ...y yn)(t), is not zero for allt € I.

The proof of this theorem goes the same way as the one for the similar theorem
we studied in the case of n-order linear differential equations. Its proof is based on
the existence and uniqueness theorem. Based on this, let us remark that every
homogeneous system x’ = Px admits a fundamental set of solutions, i.e. a set
of n linearly independent solutions.

Indeed, one has to use the existence and uniqueness theorem and denote by
Yk, the solution of the initial value problem

{:c’(t) = P()x(t)
r1(a) =0,...,zk(a) =1, ..2,(a) =0 (a€I).

Then the Wronskian of the solutions {yi, ¥, ..., yn} at a is equal to the deter-
minant of the identity matrix, which is, in particular, not zero. By Theorem [3.1.4]
we then see that this set of solutions must be linearly independent.

Theorem 3.1.5. Suppose {y1, Y2, ..., Yn} is a fundamental system of solutions of the

system x'(t) = P(t)x(t). Then every other solution of this system, z, can be written

as z(t) = Y cxyx(t), t € I, for some parameters cy.
k=1

For the nonlinear we have the following theorem:
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Theorem 3.1.6. Suppose {y1,ys, ..., Yn} is a fundamental system of solutions of the
system z'(t) = P(t)z(t) and y, is a particular solution of x'(t) = P(t)x(t) + f(t)
Then every other solution of ' (t) = P(t)z(t) + f(t), say z, can be written as z(t) =

Yp + Z ceyi(t), t € I, for some choice of the parameters cy.
k=1

Homework:
Section 3.6 page 219 Problems 21, 22;
Section 3.8 page 240 Problems 1-6, 13, 14.

3.2 Lecture XI

Quotation: “The reader will find no figures in this work. The methods
which I set forth do not require either constructions or geometrical or
mechanical reasonings: but only algebraic operations, subject to a regu-
lar and uniform rule of procedure.” Joseph-Louis Lagrange , Preface to
Mecanique Analytique.

3.2.1 The eigenvalue method for homogeneous with con-
stant coefficients

In this subsection we assume that the matrix-valued P(t) is a constant function:
A = (a;)jk=1.n- We are going to consider the homogeneous problem

(3.9) 2'(t) = Ax(t).

We remind the reader the definition of an eigenvalue and eigenvector for a matrix

A.

Definition 3.2.1. A complex number X is called an eigenvalue for the matriz A
if there exist a nonzero vector u such that Au = Au.

It turns out that the eigenvalues of a matrix are the zeros of its characteristic
polynomial p(\) = det(A — AI). We have the following simple theorem:

Theorem 3.2.2. (a) Suppose \ is a real eigenvalue of A with a corresponding eigen-
vector u. Then the vector-valued function v(t) = e*u is a solution of the DE .

(b) If A = p+ iq and the corresponding eigenvector is u = a + ib the vy (t) =
eP'(acos gt — bsinqt), vy = eP'(bcos gt + asingt) are solutions of the the DE (3.9).
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Proor. (a) Since % = XeMu and Av(t) = eMAu = AeMu we see that the

function v satisfies (3.9)).

(b) Because A is a solution of the characteristic polynomial whose coefficients
are real, the complex conjugate of A, A, must also be an eigenvalue. In fact, the
complex conjugate of u, u = a — b, is the corresponding eigenvector of}. Because
wy = eMu is a solution of , as we have seen above, and then w, = eM7 is also a
solution. Therefore, by the superposition principle, any linear combination of these
is a solution also. But then, we are done, since a simple calculation shows that

vy = (w1 +wq) /2 and vy = —i(wy — we) /2. |

Theorem 3.2.3. Suppose the matriz A has n different solutions M1, ..., Mg, Net1s Moty ---
where \; are real for j = 1...k and pure complex for the rest of them. We denote by
u; the corresponding eigenvectors of the eigenvalue \;. Then a fundamental system
of solutions of can be given by {vy,...,v,} where v; = eMu; for j = 1..k and
v; = ePit(ajcos gt —b;singt), vj41 = ePit(bjcosqt + a;singt),... for j > k+ 1, where
Aj =p+iq and u; = a; +1ib; for j > k+ 1.

Proor. Let us show that the system is linearly independent. First, let us
assume that all of the vector value functions are of the form v; = e*u;. We observe
that uy, ..., u, are linearly independent as vectors in R". Indeed, this is happening
because if 2?21 c;ju; = 0 then, applying A several times to this equality, we get
2?21 Aj°cju; = 0. This implies cjuj; = 0 for every [ = 1..n because the main the
determinant of the homogeneous linear system obtained is a Vandermonde determi-
nant. The Vandermonde determinant is equal to H()\j — \i) # 0. Because each

i<l
u; is not zero, there exist a component u; which is not zero. Then we get ¢; = 0.
Hence uq, ..., u, are linearly independent.

Using this we get that det([u1, ..., u,]) # 0. But then the Wronskian of vy, ..., v,

is eMit-tAtdet([uy, ..., u,]) # 0. Using Theorem we see that vq,...,v, are
linearly independent.

The case when we have some pure complex eigenvalues, using elementary prop-
erties of determinants, we obtain that the Wronskian value for the given functions
v1, ..., v, change from the value calculated above for functions of the type e**u; just
by a multiple of a power of 2. [ |

Example: Let’s take the Problem 20, page 312:

x) = bxe + w9 + 313
xh =z + Try + 23
xh = 3x1 + x9 + ;.
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51 3
Here the matrix is A = 1 7 1 ]. The characteristic polynomial is p(\) =
315

det(A — N). Let us notice that

5— A 1 3 9—X 9—X 9—)\
det 1 7T—A 1 = det 1 7T— A\ 1 =
3 3

1
Ndet | 17
3

Hence A\ = 9, Ay = 2, and A3 = 6. Three eigenvectors corresponding to these are

—A
1 —)\

wy = [1,1,1]%, up = [-1,0,1]%, uz = [1,—2,1]*. Then the general solution of this
system is

T = clegt — c9e?t + g€

Ty = c1e% — 2636

x5 = c1e% + coe® + c3e%.

Homework:
Section 5.1 pages 297-298 Problems 1-30;
Section 5.2 page 312 problem 1-26;

3.3 Lexture XII

Quotation: “/Regarding v/—1 or what we denote these days by i, the
building block of imaginary complex number system/: ... we can repudiate
completely and which we can abandon without regret because one does
not know what this pretended sign signifies nor what sense one ought to
attribute to it.” Augustin-Louis Cauchy said in 1847.

3.3.1 Multiplicity vs Dimension of the Eigenspace

In this part we assume that the system



3.4. DEFECT ONE AND MULTIPLICITY TWO 71

(3.10) Z'(t) = Ax(t).

has constant coefficients: A = (a;);jk=1.n, @ € R.

Definition 3.3.1. We say that an eigenvalue Ao has multiplicity m if the character-
istic polynomial p(\) = det(A—AI) = (A—Xo)™q(N) with g(Xo) # 0. The multiplicity
of Ao will be denoted by m(X\).

Definition 3.3.2. The set of vectors Ey, :== {v: Av = A\ } is a linear subspace
mvariant to A and the dimension of it is called the dimension of the eigenspace
associated to \g denoted de(Ng).

In general we have the following relationship between these numbers:

Theorem 3.3.3. If A is an eigenvalue of A we have de(\) < m(A).

In the case m(A\) = de(\) we call A\ complete. As we have seen before we
have the first general simple solution of the system (4.5)) in the situation that every
eigenvalue is complete. In this case we also say that A is diagonalizable.

Theorem 3.3.4. If the eigenvalues of A are A1, g, ..., A for which de(\;) = m(};)
for every j = 1...k then the general solution of is

n

z(t) = Z cse™Mly,

s=1

where vy, ..., v, s a basis of eigenvectors.

If we have de(\) < m(A) then we call the eigenvalue A to be defective. Let us
notice that if an eigenvalue is not complete it is defective. For a defective eigenvalue
the number m(A) — de()) is called the defect of .

3.4 Defect one and multiplicity two

Suppose that Av = Av and (A — AN)w = v. It turns out that in this case there is
always a solution in w of this last equation. Let us check that the vector function
u(t) = (w+ tv)eM is a solution of (4.5). We have u/(t) = [A(w + tv) + v]e* and
Au(t) = (Aw + v + Mv)er. So, we have u/(t) = Au(t). This solution is linearly
independent of e’v. Indeed, if c;e*v+co(w+tv)eM = 0 for all ¢, we can get rid first
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of e to obtain ¢;v + co(w + tv) = 0 for all t. After differentiation with respect to ¢
we obtain cov = 0 which implies ¢ = 0 and then automatically ¢; = 0. Hence the
two vector valued functions that one has to take corresponding to the eigenvalue A
are: ey and eM(w + tv).

Example: Let us take the following example A := and let us say we

(el NI
I )
— NN

want to solve the following initial value problem

= Az,
I1<O) = 1,£L'2(0) = 271‘3(0) = 3.

The characteristic polynomial is

1—-Xx 2 2 0 (I1+XN)B—-=XN/2 (1+2N)
p(A) = det 2 1-Xx 2 = det | 2 1—A 2 =
0 4 1-A 0 4 1—A
_ 3-=XN/2 1 _ 20y
2(1—1—)\)[ 4 L\ | = (A+1)2(N=5).
Hence \; = Ay = —1 with multiplicity 2 and A3 = 5. Let us solve for the eigenvectors
of \3 = 5:
4 2 2 ][ xn 0
2 —4 2 29 | = | 0 | which gives simply a one-dimensional eigenspace
0 4 4] | 2 0
- -
2 | =t | 1],t€R
1
We will just take vy = | 1
1
2 2 2 T
Now we solve (A — M\)v =0: | 2 2 2 zy | = 0 which gives also a one-
0 4 2 XT3
1
dimensional eigenspace generated by vy = 1
-2
Then we solve for (A — Ag)w = wvy. One solution of this equation can be
3/2
taken to be w = 0 |. Therefore the general solution of our equation is z(t) =

—1
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c1v1€” + [covy + c3(w + tvg)]e~t. This gives

Then we need to determine the constants ¢y, co, c3 in order to get the initial
condition satisfied. This gives ¢; = %, Co = —%, and c3 = —%. Finally substituting
we get

19 1046t ,—
x1(t) ge&— ;rte t

zo(t) = et — et
T3(t) = 12¢Bt _ BH12 ot

3.4.1 Generalized vectors

Let A\ be an eigenvalue of A.

Definition 3.4.1. A vector v is called a rank r generalized eigenvector associ-
ated to X if (A—X)'v =0 and (A—XI)""tv #£0.

Clearly, every eigenvector is a rank one generalized eigenvector. Notice that
if v is a rank r generalized eigenvector associated to A then we can define v; =
(A — XI)"1v which is not zero by definition and satisfies Av; = Av;. This means v;
is a regular eigenvector. We define in general vo = (A—AI)"2v,..., v,_1 = (A— v,
v, = v. These vectors are all not equal to zero because otherwise v; becomes
zero. In practice we need to work our way backwards in order to determine a
generalized eigenvector. First we find v; as usual since it is a eigenvector. Then we
find vy from the equation (A — Al )vy = v;. Next we solve for v3 from the equation
(A—Al)vg = vy and so on. One can show that vy, ve, ..., v, are linearly independent.
We have the following important theorem from linear algebra which is sometime
called the Jordan representation theorem because it allows one to represent the
matrix, up to a similarity, i.e. SAS™!, as a direct sum of Jordan blocks: A\, + N
where N is a nilpotent matrix that has ones above the diagonal and zero for the
rest of the entries.

Theorem 3.4.2. For every n x n matrix A there exists a basis of generalized eigen-
vectors. For each eigenvalue \ of multiplicity m(\) there exists m(\) generalized
linearly independent vectors associated.

In general, if we have an eigenvector v; such that v, is is a rank r general-
ized eigenvector corresponding to the eigenvalue A, the contribution of these to a
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fundamental set of solutions for (4.5)) is with the following set of functions:

up (t) = eMoy,
ug(t) = (vg + tvy)eM,
<t> (U?) + tv? + 2|U1)6)\t7

ceey
= 1

ur(t) = (v + tv, + Sv,g + o+ = L——vy)eM.

One can show that these are linearly independent vector-valued functions
which are solutions of . We may have for a certain eigenvalue different sets
of this type. Putting all together will give a fundamental set of solutions of .
This fact is insured by the Theorem [3.4.2] In the case the eigenvalue is pure complex
we just take the real and imaginary parts of these vector valued functions.

Example: Find the general solution of the differential system:

) =z + T

/
Ty = Xo + X3

Th =3
110
The matrix of this systemis A= | 0 1 1 |. Clearly we have A = 1 as eigenvalue
0 01
1
of multiplicity 3 and a corresponding eigenvector is v; = | 0 |. Then the equation
0
0
(A — A )vy = v; has a nonzero solution vy = | 1 This makes v, a rank 2
0
generalized vector. If we continue, the equation (A — Al)vs = vy has a nontrivial
0
solution v3 = | 0 |. This means that v3 is a rank 3 generalized vector. Then a
1

fundamental set of solutions of our system is u;(t) = e'vy, us = (tvy + v9)e' and
= (t*v1/2 + tvy + v3)e'. Therefore, the general solution of the differential system

11 = (cret + ot + c3t?/2)e!
is < z9 = (g + teg)e

T3 = czel
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3.4.2 Fundamental Matrix of Solutions, Exponential Matri-
ces

Suppose we are still solving a system 2’ = Az as before. A fundamental matrix
of solutions is a n X n matrix formed with n linearly independent solutions of the
system . Such a matrix can be simply calculated by using the Taylor formula,
e =1+ x+ 2%/2! + ..., for matrices instead of numbers.

Definition 3.4.3. The matriz e is the result of the infinite series Z,;”OA’“Z,

teR.
Theorem 3.4.4. The matriz e is a fundamental matriz of solutions of ¥’ = Ax.
/: A
The solution of the initial value problem w(0> v is given by z(t) = e'xy.
T =Xy

Example: Let us take Problem 12, page 356 as an exemplification of this.
5 —4
3 =2

x) = bxry — 4das

with the matrix A = { ] We

The system given is ,
Ty = 3T1 — 2T

need to calculate e
—3X+ 2. (In general the
is A2 — tr(A)\ + det(A),
re Ay = 1 and Ay = 2. Two

The characteristic polynomial of A is p(\) =
characteristic polynomial for 2 x 2 matrix A = [
where tr(A) = a + d). The eigenvalues in this ¢

corresponding to A; and A

A2
a b
c d
case ar

. . . 4
eigenvectors are in this case v; = { ] and vy = [ 3 ]

respectively. If we denote the matrix [v1|vs] by S := [ 1 3 1 then let us observe

that AS = [v1]|2v5] = SD where D := [ (1] g ] is a diagonal matrix with entries

exactly the two eigenvalues. Therefore A = SDS~!. This allows us to calculate
t

A" = SD"S™!. Notice that e'” = % egt . In general the inverse of a 2 x 2

matrix matrix A = [ Z 2 ] is given by A=! = detl(A) [ d _ab } Hence

A tDo—1 __ 14 €t O —3 4
=5e75 _l13 Ho e2t H1 —1 ]

A _ —3el +4e?t 4et — 4e*
| —3e! + 3e?  4e! — 3e?

or
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Homework:
Section 5.4 pages 342-343 Problems 23-33;
Section 5.5 page 356 problems 1-20, 25-30;



Chapter 4

Nonlinear Systems and Qualitative
Methods

4.1 Lecture XIII

Quotation: “I entered an omnibus to go to some place or other. At that
moment when I put my foot on the step the idea came to me, without
anything in my former thoughts seeming to have paved the way for it,
that the transformations I had used to define the Fuchsian functions were
1dentical with non-Euclidean geometry.” Henri Poincaré

4.1.1 Nonlinear systems and phenomena, linear and almost
linear systems

We are going to discuss the behavior for solutions of autonomous systems DE of the
form

de — P(g,
-y {d— P

dt
Let us assume that the two functions F' and G are continuous on a region
R = {(z,y) € R?la < x < b,c < y < d}. This region is going to be called phase
plane. By a similar theorem of existence and uniqueness we have a unique solution
to the IVP:

7
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& — F(z,y)

(4.2) W =Gl(z,y)

2(0) = 20, 9(0) = 40

where (zg,%0) € R. The curve (z(t),y(t)), t € (—¢, B) represented in R is called a
trajectory. For each point of R there exist one and only one trajectory containing
it.

Definition 4.1.1. A critical point for the system is a point (a,b) € R such
that F(a,b) = G(a,b) = 0.

Clearly, if (a, b) is a critical point the constant function (z(t),y(t)) = (a,b) for
every t € R is a solution of (4.5)) which is called an equilibrium solution. We
observe that the trajectory of a critical point is just a point.

The phase portrait is a sketch of the phase plane and a few typical trajec-
tories together with all critical points.

Definition 4.1.2. A critical point (a,b) is called a node if either every trajectory
approaches (a,b) or every trajectory recedes form (a,b) tangent to a line at (a,b). A
node can be a sink if all trajectories approach the critical point or a source if all
trajectories emanate from it.

A node can be proper or improper depending upon the number of tangent
lines that the trajectories have: infinitely many or only two. The following notion
of stability is the same as for ODE case:

Definition 4.1.3. A critical point (a,b) is called stable if for every ¢ > 0 there
exists a § > 0 such that if |xg —a| < 0 and |yo — b| < d the solution of the IVP
statistics |x(t) —a| < € and |y(t) — b| < e.

In general nodal sinks are stable critical points. A critical point which is not
stable is called unstable.

A critical point can be stable without having the trajectories approach the
critical point. If a stable critical point is surrounded by simple closed trajectories
representing periodic solutions then such a critical point is called (stable) center.

Definition 4.1.4. A critical point is called asymptotically stable if it is stable
and for some § > 0 if |xg—al < 0 and |yo—b| < & then lim z(t) = a and Jim y(t) =b.
— 00 — 00
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An asymptotically stable critical point with the property that every trajectory
spirals around it is called spiral sink. A spiral source is a critical point as before
but with time ¢ going to —oo instead of oo. If for a critical point there are two
trajectories that approach the critical point but all the other ones are unbounded as
t — oo then we say the critical point is a saddle point. Under certain conditions
one can show that there are only four possibilities for trajectories:

—_

(x(t),y(t)) approaches a critical point (a,b) as t — oc;

t)) is unbounded;

= W N
~—~ o~
8
~—~ o~

),y(t))
),y(t)) is a periodic solution;
),y(t))

t)) spirals toward a periodic solution as ¢t — oo.

4.2 Linear and almost linear systems

In the linear case, as usual, we can always have more to say. A critical point (a,b)
is called isolated if there are no other critical points in a neighborhood of (a,b).
We assume that F' and G are differentiable around (a,b). The linearized sytem

associated to (4.5) is

(4.3)

A system is said to be almost linear at the isolated critical point (a,b) if

F(z,y) — G (a,b)(z — a) — 57(a,b)(y — b)

lim =
T—a,y—b \/(.Z' _ CL)2 + (y _ b)2
and
Gl - @) - b b
T—a,y—b \/(iIZ’ _ a)2 + <y _ b)2

In this case its linearization is (4.8)). This is a linear system with constant
coefficients. In practice, the functions F’ and G are continuously differentiable. This
insures that the system (4.5)) is almost linear around a critical point.
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Eigenvalues Ai,\o Type of critical point
Real, different, same sign Improper node
Real, unequal, opposite signs Saddle
Real and equal, Proper or improper node
Pure complex, Spiral point
Pure imaginary Center

Table 4.1: Type of critical points for linear systems
4.3 Critical points classification of linear systems

We are going to consider only two dimensional linear systems of the type

' =ax + by
(4.4) {/_
y =cr+dy

which we already know how to solve. Let us assume that the two eigenvalues are A\,
and Ao. Then, what type of critical point (0,0) of (4.4) is could be determined by
the following chart:

For the stability of the critical point of (4.4]) we have:

Theorem 4.3.1. Let A\; and Ay be the eigenvalues of the system which has
(0,0) as an isolated critical point. The critical point (0,0) is

(a) Asymptotically stable if the real parts of Ay and Ay are both negative;

(b) Stable but not asymptotically stable if the real parts of A1 and Ay are both
zero;

(c) Unstable if either Ay or A\s has a positive real part.
The next theorem says that for an almost liner system the effect of small per-

turbations around an isolated critical point is almost determined by its linearization
at that point.

Theorem 4.3.2. Let Ay and Ay be the eigenvalues of the linearization system at an
1solated critical point of an almost linear system . Then

(a) If A\y = Ao, we have a node or spiral point; in this case the critical point is
asymptotically stable if Ay = Ao < 0 or unstable if A\ = Ay > 0.

(b) If A1 and Ay are pure imaginary, then we have either a center or a spiral
point (and undetermined stability)

(c) Otherwise the type and stability of (a,b) is the same as the one for the
linearization system.
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Homework:
Section 6.1 pages 375-376 Problems 1-8;
Section 6.2 page 389 Problems 1-32;

4.4 Lecture XIV

Quotation: “Everything is vague to a degree you do not realize till you
have tried to make it precise.” Bertrand Russell British author, mathe-
matician and philosopher (1872 - 1970)

4.4.1 Nonlinear spring

Let us assume that Hooks’s law is “corrected” a little to: F = —kx + 2. In a

sense, it is natural to think that there are some other terms in the Taylor expansion

of the force acting on a body of mass m in terms of the displacement z. In this case

the differential equation that we obtain from Newton’s law is ma” = —kz + [fa>.
dx .

We can turn this into a system if we introduce y = -

dt m m

do _
(4.5) {5; !

The discussion of what happens with the mechanical system depends clearly
on f.

Case (§ < 0 “hard spring”: In this situation we have only one critical point:
(0,0). The Jacobian of the almost linear system (4.5)) is

J(fc,y)z{ " 1]

—k 13842 0

so at the critical point J(0,0) = [ _Oﬁ (1) }

The eigenvalues of J(0,0) are ii\/% and according to the theorem about transfer

of stability and type from the previous lecture we see that all we can say is that
(0,0) is either a center or a spiral point. From the point stability the theorem does
not say what happens.
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But we can determine what is going on by integrating (4.5). By multiplying
the second equation in (4.5)) by y and integrating we obtain
y* | ka? |8zt

2 2m 4dm

These curves are almost like circles around (0,0) (see figure below). The stability
but not asymptotic stability of (0,0) follows.

= constant.

Figure 1

This means that we have almost regular oscillations around the equilibrium
position.

Case 3 > 0 “soft spring”: The system has two more critical points: (£ \/g ,0).

0

which means the eigenvalues are real one positive and on negative:i,/%. so by

The Jacobian at the critical points is at the critical point J(+ %, 0) = [ i L }

the same theorem we have that both the new critical points are saddle points and
unstable.
In fact if we use the method of integration as before we get
y2 ka2 ﬂlLA

z_ —_—— —— =

2 2m 4dm

The phase portrait is as below:
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Figure 2

This suggests that for a certain constant ¢ (say ¢g, the Energy) we get solutions
which go directly to an static position without any oscillations. For values of ¢
smaller than that quantity we have oscillations around the equilibrium position.
For values of the energy bigger than ¢y the displacement goes to infinity. This is not
corresponding to anything real so it seems like this model does not work.

4.4.2 Chaos
Let us start with the logistic differential equation
dP
(4.6) = aP - bP?, (a,b>0)

which models in general a bounded population.

We are going to look into the discretization of this equation according to
Euler’s method: compute P, — P, = (aP, — bP?)h which are the values of the
approximation of P(t) at the times t; = ¢y + kh, where h is the step size. This can
written as P,y = rP, — sP? where r = 1 + ah and s = bh. Then if we substitute
P, = %z, then the recurrence becomes

(4.7) Tpy1 = 1T, (1 — x,).

We notice that the function f(z) = rz(1 — z) has a maximum at x = 1/2 equal to
r/4. So, for r < 4 this function maps the interval [0, 1] into itself. So one can iterate
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and compute the sequence defined in for large values of n. It turns out that for
r < r. where r. = 3.57.. the behavior of the sequence can be predicted in the sense
that approaches a certain number of limit points. The sequence becomes chaotic for
r = 7., i.e. there are infinitely many limit points that fill out the interval [0, 1]. In
other words the sequence is unpredictable. For instance we cannot tell, unless we
compute it precisely where x19p0000 is in the interval [0, 1].

The number of periodic orbits for r < r. changes at some specific values 7.
The mathematician Mitchell Feigenbaum discovered that
Tk — Tk—1

lim ————— = constant =~ 4.6069...
N0 Tyl — Tk

This constant appears in other places in mathematics, so it gained a status similar
to those constants such as 7, e or 7. Some differential equations have the same type
of behavior for certain values of the parameters. Such examples are mz” + cx’ +
kx + Ba® = Fycoswt (forced Duffing equation) or the famous Lorenz system

dz

g — —ST+ sy
(4.8) W— —gzt+re—y
dz

=y —bz.

Homework:
Section 6.4 page 418, Problems 2, 5-8;
Section 7.1 pages 444-445, Problems 1-42.



Chapter 5

Laplace Transform

5.1 Lecture XV

Quotation: “Given for one instant an intelligence which could com-
prehend all the forces by which nature is animated and the respective
positions of the beings which compose it, if moreover this intelligence
were vast enough to submit these data to analysis, it would embrace in
the same formula both the movements of the largest bodies in the uni-
verse and those of the lightest atom; to it nothing would be uncertain,
and the future as the past would be present to its eyes.” Pierre Simon
De Laplace (1749 — 1827), French mathematician, philosopher. Theorie
Analytique de Probabilites: Introduction, v. VII, Oeuvres (1812-1820).

5.1.1 Definition and a few examples

The Laplace transform is a transformation on functions as the operator D of dif-
ferentiation that we have encountered earlier. The study of it in this course is
motivated by the fact that some differential equations can be converted via the
Laplace transform into an algebraic equation. This is in general thought as being
easier to solve and then one obtains the solution of the given differential equation
by taking the inverse Laplace transform for the solution of the the corresponding
algebraic equation.

In order to define this transform we need a few definitions beforehand.

Definition 5.1.1. A function f is called piecewise continuous on the interval [a, b]
if there is a partition of the interval xo = a < x1 < 9 < ... < x, = b such that f s

85
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continuous on each interval (xy, xr11) and it has sided limits at each point xy.

A function f defined on an unbounded interval is said to be piecewise contin-
uous if it is so on each bounded subinterval.

Definition 5.1.2. A function f :[0,00) — R is called of exponential type at oo if
there exist nonnegative constants M, ¢ and T such that |f(t)] < Me® for allt > T.

Definition 5.1.3. For every function [ :[0,00) — R which is piecewise continuous
on some interval [T, 00), integrable on [0,T] and of exponential type at infinity the
Laplace transform L(f) is the new function of the variable s defined by

L(f)(s) = / et ().

The domain of L(f) is taken to be the set of all s for which the improper integral

n

exists, i.e. lim e " f(t)dt exists.
n—oo 0

The next theorem tells us that the above definition is meaningful. We are
going to denote the class of these functions by D(L).

Theorem 5.1.4. Under the assumption in the definition the Laplace trans-
form L(f)(s) exists for every s > c.

Before we prove this theorem let us compute the Laplace transform for some
simple functions.

Example 1: Suppose we take f(t) = 1 for all ¢ € [0,00). Then L(f)(s) =

[P estdt = —<|F =1, for all s > 0. Therefore we write

L(1)(s) = é, s> 0.

Example 2: Let us take f(t) = e® for all ¢ > 0. Then if s > ¢, L(f)(s) =

Jo e stetdt = [ et = —%]80 = L. Hence
L(e)(s) = ! , §>c.
s—c¢

n

Proor of Theorem [5.1.4 We need to show that the limit lim e S f(t)dt
n—o0

0
exists. Using Cauchy’s characterization of the existence of a limit it suffices to show

that lim / e * f(t)dt = 0. We have the estimate

n,Mm—00

m
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| [Pt f()dt] < [Temt| f()]dt < M [T emmdt =

(5.1)
(SJ\_/[C) (ef(sfc)m _ 67(sfc)n> =0
as m,n — oo (T' < m < n) provided that s > c. |

Note: Cauchy’s characterization is one of the most common tools in analysis.
Augustin Louis Cauchy was born on 21st of August, 1789 in Paris, France, and died
May 23rd, 1857 in Sceaux near Paris.

5.1.2 General Properties

Corollary 5.1.5. Let us assume that f is as in the Theorem|5.1.4| Then lim L(f)(s) =

S§—00
0.

Proor. Since we know the limit in the definition of £(f)(s) exists we let n go
to infinity in the sequence of inequalities (5.1) but fix m = T. That gives

T R et

for every s > ¢ and the conclusion of our corollary follows from this and a theorem
of convergence under the integral sign. [ |

The Laplace transform may exist even for functions that are unbounded on a
finite interval. One such example is f(t) =t*, ¢t > 0 with a > —1. Notice that for
a € (—1,0) the integral fooo e—*ttedt is also improper at 0. To compute L£(f)(s) we
change the variable st = u (s > 0) and obtain

L(f)(s) = L /000 e "utdu = M,

Sa-l—l SCH-l

where I is defined by I'(z) = fooo e 't*"1dx and exists for all x > 0. An integration
by parts shows that

[z+1)= / e "trdr = —e 1200 + x/ e 4" tdx = ol (2).
0 0

because I'(1) = 1 we get by induction I'(n + 1) = n! for n € N.

In particular we get for instance £(t°)(s) = % = %, s > 0. For fractional

values of a one needs to know I'(a). One interesting fact here is that I'(1/2) = /7.
To see this let us change the variable t = u? in IT'(1/2) = [;° e~"t~/2dL.
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We obtain F(1/2 = fooo “vy 1 Qudy = 2f°° e du. Now we calculate
T(1/2)2 = 4 [ e “du [Fedv = 4 [ [T e @+ ) dudv. We then use polar

coordinates u = rcoss, v = rsins. So we get I'(1/2)? = 4f7r/2 fo - rdr)ds = m
which implies I'(1/2) = /7. This allows one to compute for instance I‘(S/ 2) =
20(1/2) = 2.

Proposition 5.1.6. The Laplace transform is linear.

Proor. The integral and the limit are linear transformations on functions. One

needs to check also that D(L) is a linear space of functions. [ |
21 _T'(3/2) 3\/_
) 2 _ 2 _ _
Example: L£(3t> +2v/1)(s) = 3L(t*)(s) + 2L(V1)(s) = 33 +2— 35 = S\f

Another example we would like to do involves the Laplace transform of a
complex valued function which is a natural extension of the Laplace transform of
real valued functions.

Example: We take f(t) = e* where z = a + ib. Notice that |f(t)] = e* so this
function is of exponential type at infinity. We have L(f)(s) = / e tetdt =
0

0o 1 (s—2)t 1
/ e~ 5=t — lim < _ £ > = , provided that s > a.
0 55—z

t—00 S —Z S§—Z

This is happening because [ - z)t| = €_|S(:a|)t — 0 as t — oo. Since L
is linear ReL(f)(s) = L(e™cosbt)(s) = Re = arre and ImL(f)(s) =

L(e®sinbt)(s) = Im—— = —2

s—z (s—a)2+b%"

Example: This example involves the Laplace transform of a function denoted by u

and defined by

1 if >0 . o
u(t) = _ or a translation of u which is denoted by u, and defined
0 if z <0,
as uy(t) = u(t —a), t € R.
We get L(u,)(s) = [, e u = [ e *tdt = <. Let us record the main

formulas that we have dlscovered SO far in the table m:

Proposition 5.1.7. The Laplace transform is a one-to-one map in the following
sense: L(f)(s) = L(g)(s) for all s > sy implies that the functions f and g coincide
at all their continuity points.

Since this is true we are allowed to take the inverse of the Laplace transform
denoted by £~! by simply inverting the table above (in other words it is not am-
biguous to talk about the inverse of the Laplace transform).
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f@) | L(f)(s)
¢ =
e cos bt (s—iz);g—i-lﬂ
€at Sin bt (Sfa)++b2
ua(t) e;sa
t (a>—1)| Hetl
eat 1

Table 5.1: Laplace Transform Formulae

Theorem 5.1.8. Given the function f : [0,00) — R of exponential type at infinity
which is continuous and whose derivative is piecewise continuous, then L(f') exists

and L(f")(s) = sL(f)(s) — f(0).

Proor. First we assume that the derivative is continuous at all points. Then
an integration by parts will give

L(f)(s) = [y e f'(t)dt = e f()I5° + s [y~ e f()dt = sL(f)(s) — f(0),
where tlim e "' f(t) = 0 because of the hypothesis on f to be of exponential type.

The proof in the general case goes the same way with the only change that the
fundamental formula of calculus holds true for f under the given hypothesis. [ ]

Corollary 5.1.9. If the function f is of exponential type and it has derivatives of
order k, (k <n), exist with f™ piecewise continuous then

L(f*)(s) = s"L(f)(s) = "1 F(0) — ... = f"1(0).

Let us solve a differential equation using the Laplace transform now. Problem
6, page 455 asks for the following initial value problem of a second order linear DE
with constant coefficients but non-homogeneous: x” + 4z = cost, z(0) = 2'(0) = 0.
We first apply the Laplace transform to both sides of the equation and use the
formula for the Laplace transform of the derivative of a function: s?£(z)(s)—sz(0)—

2'(0) +4L(z) = Z5. Hence we get L(z)(s)(s* +4) = Z°5. Solving for L(z)(s) we
obtain

s
(5.2) L(x)(s) =

(s2+1)(s2+4)

In order to take the inverse Laplace transform we need to write the right hand
side of (5.2) in its partial fraction decomposition. There are some shortcuts that
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one can use in order to obtain the partial fraction decomposition. These techniques
will be discussed in class. In this simple case it is easy to see that we have

1 s 1 5
L == e :
@) =35051 "3+
Equivalently, if we remember the table of Laplace transforms we can rewrite
this equality as

L(2)(s) = %E(Cos £)(s) — %E(cos o).

Because the Laplace transform is linear and injective we conclude that z(t) =
%cost — %cos 2t for all t.

Theorem 5.1.10. If f is piecewise continuous and of exponential type at infinity
then

£ Fa)dn)(s) = L))

Proor. One can see that g(t) = fg f(z)dz is continuous and whose derivative
is piecewise continuous. It is easy to see that it is also of exponential type. Hence

one can apply the Theorem to g: L(¢')(s) = sL(g)(s) — ¢g(0). This is exactly
the identity that we want to establish. [ |

Homework:

Section 7.2 page 455, Problems 1-37.
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5.2 Lecture XVI

Quotation: “Mathematics is the search of structure out there in the
most incredible places of the human intellect and at the same time ap-
parently unrelated, in all the corners of what presents itself as reality.”
Anonymous

5.3 More properties of the Laplace transform

We have shown how to obtain the Laplace transform for the functions in the table

below:
f(t) L(f)(s)
t". neN 2 5> 0
e cos bt e S > a
e sin bt (S_a_)++b2, s>a
U (1) €= 5>0
t*(a>-1)| "D 550
et L, 5> Rez

Using the theorem about the Laplace transform of the derivative of a function
we may obtain additional transforms using the technique exemplified in the next
example:

Example: Problem 27, page 456. We consider the function f,(t) = t"e*" with
z = a+iband n € N. Then f is continuous of exponential type (¢ = Re z)
and its derivative exists everywhere, f/(t) = nt"'e* + zt"e*, and f’ is piecewise
continuous (in fact continuous on [0,00)). Hence L(f")(s) = sL(f)(s) — f(0) or
nL(fn_1)(s) + zL(fn)(s) = sL(f,)(s). Solving for L(f,)(s) we get

n

L(fn)(s) = L(fn-1)(s), s > Re z.

S —Z

This recurrence can be used inductively to prove then that

|
n zt . n:
(5.3) L(t"e*)(s) = G s> Re z.
Let us observe that this formula generalizes several of the formulas that we have
seen so far but will give two new ones if we take the real part and the imaginary
part of both sides (z = a + ib):
nl > (";;1) (—=1)7(s — a)" T -2p2
0<j<(n+1)/2

G —ap + 5 |

(5.4) L(t"e cosbt)(s) =
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and

n! Z (;jf‘l)(—l)j(s—a)"_%sz*l
0<j<n/2

(5.5) L(t"e™ sin bt)(s) = U5 a2 £ 02

Using the theorem about the Laplace transform of the integral of a function we
may also obtain some inverse Laplace transforms of functions that contain a power
of s at the denominator. We again use an example to exemplify this.

Example: Problem 24, page 456. In this problem we need to find the Laplace
transform of F(s) = m Because L( fo x)dzx)(s) = L(fs)(s) we see that if the

right hand side is F'(s) we need to find what the inverse Laplace transform just for

1 1 1

(s+1)(s+2) T s+1 s+2 L(e™")(s) = L(e7*)(s).

G(s) =

t
Therefore L71(G)(t) = e* — 7" and our function is f(t) = / et — e Fdy =
0

1 1 1 e
l—e @ (2 _Zp 2y, % _ -t
e ( 5~ 3¢ ) ) + 5 e
Next we are going to generalize the theorem about the Laplace transform of

the derivative of a function.

Theorem 5.3.1. Suppose f : [0,00) — C is piecewise continuous of exponential
type (of constant c), which has a derivative f" at the points of continuity with the
exception of maybe an isolated set of points. Then

(5.6) L(f")(s) = sL(f)(s)—f(0)— > e [f(t+0)=f(t=0)], s>c.
t discontinuity
point of f

Proor. Let us assume that the origin ¢ = 0 and the discontinuity points of f are
{tn}nep; soty =0 <ty < ..., D C N. Next we assume first that f’ exists on each in-

terval (tx, txs1). Then L(f')(s) = lim _Stf = lim | Z / e f'(t)dt]
a—00 a—00 ,
where n(a) is the greatest index for Wthh tna) < @ and tj, = tk if & < n(a) and

/
tn(a) =a.

On each interval [t/ ;] we apply the integration by parts to the function
which becomes continuous at the endpoints when f is extended with the sided limits:
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g1 o . et 0 o )
&/’ e fi(t)dt = e " f()|,—p -+sh/) e * f(t)dt. Then
t! n t

n n

n(a)+1

/ S —st : —Stn, / o _ ,—Stn /
L(F)(s) = Jim s / T Ji] D e Gy = 0) = S0 +0)
. Rearranging the summation and letting a — oo we obtain ([5.6). The general case
is handled the same way with the observation we made before that the fundamental

formula of calculus works under our more relaxed assumptions. [ |

For an application let us work Problem 34, page 456. We apply formula ([5.6)
for f(x) = (—1)1#) where |x] is the greatest integer function. Figure 1 below gives
an idea of what the graph of f looks like.

Figure 1

This function has a discontinuity for every n € N and a jump of f(2n + 0) —
f(2n—0) = 1—(—1) = 2 for even discontinuity points and f(2n+1+40)— f(2n+1—
0) = —1 —1= -2 for every odd one. In other words f(n+0) — f(n —0) =2(—1)"
for every n € N. Since the derivative is basically zero where it exists applying

we obtain 0 = sL(f)(s) — f(0) — Z 2(—1)"e ™. Using the formula for summing a
n=1

sequence in geometric progression (147 +17r2+ ... = 1—;, whenever r < 1) this turns
into
1 _l—e

l4+es 14+es

sL(f)(s) =14 2(—e™?)

Another way of writing this using the hyperbolic functions sinhz = ¢ _26 ,
e + e T ' 1 63/2 . 6—3/2 1
coshx = T 1S E(f)(S) = gm = gt&ﬂh(S/Q)

Theorem 5.3.2. (Translation along the s-axis) If f is such that L(f)(s) exists
for all s > ¢ then L(e™ f(t))(s) exists for all s > a+ ¢ and

L(e"f(1))(s) = L(f)(s = a).
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The proof of this theorem is straightforward. Let us work out a few other examples
from this next homework:

Problem 10, page 465. Find the inverse Laplace transform of the function F(s) =
25 =3

952 — 125 +20°
Observe that
2s — 3 2s — 3
F — =
)= Gs—2r =16~ 05 —2/37 + 169 &
2 s—2/3 5 4/3

PO = 2P+ P 36 G237+ 43P

Hence L7'(F)(t) = 2e*/3 cos 4t /3 — 2e*/3sin 4t /3.

Problem 34, page 465. The DE is z® + 132" + 362 = 0 with initial conditions
z(0) = 2”(0) = 0, 2/(0) = 2 and 2"(0) = —13. Applying the Laplace transform we
get s1L(z)—s32(0)—s%2'(0) —s2”(0) — 2" (0) +13[s*L(z) —sx(0) —2'(0)]+36 L(z) = 0.

Substituting the initial conditions we get
L(z)(s)(s* 4+ 135> + 36) — 25> + 13 — 26 = 0.
, , 25> 4+ 13 s°+445°+9
Solving for L(z) gives L(x)(s) =

s'+13s2+36 (s2+4)(s2+9)
2 1 3 1

1 . 1, .
5214 t32 i §£(SIH 2t)(s) + gﬁ(sm 3t)(s).

Taking the inverse Laplace transform we obtain x(t) = %sin 2t + %sin 3t.

Jor L{z)(s) =

Problem 24, page 465 Find the inverse Laplace transform for the function

s

F(s) = T dal Using the idea given in the textbook we factor the denominator
s a

of fraction in F":

F(s) = (s2 — 2as + 2a2)(s% + 2as + 2a?) - (s —a)? + a?][(s + a)? + a?]

B 1 1 1 B 1 a a
 da (s—a)?+a®> (s+a)+a?  4a? (s—a)?+a? (s+a)?+a?)’

Hence £L(F)(t) =

— (e“t sinat — e “gin at) or
4a?

1
LY F)(t) = 50 sinh at sin at.
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Homework:

Section 7.3 page 455, Problems 1-38.

5.4 Lecture XVII

Quotation: “The key to make progress in the process of learning math-
ematics is to ask the right questions.” Anonymous

5.4.1 Convolution of two functions

Let us assume we have two functions, f and g, which are piecewise continuous and
of exponential type (with the same constant c)

Deﬁnltlon 5.4.1. The convolution of f and g is the new function (f * g)(t) =
fo g(t —x)dx, t > 0.

The convolution defined this way is commutative: f x g = g* f. This can be
easily seen by a change of variables: y =1 — z,

(f*g)(t =f0 g(t —a)de = [ f(t —y)g(y)(—dy)
=[5 g( dy—(g*f)()

Theorem 5.4.2. The convolution of the two functions of exponential type (with
constant c) is also of exponential type (with constant c+€ ). The Laplace transform of
the convolution of two functions is the product of the individual Laplace transforms:

L(fx9)(s) = L{f)()L(g)(s),s > ¢

Proor. Let us denote by F(s) the Laplace transform of f and by G(s) the
Laplace transfrom of g. If s > ¢ then F(s = [ et f(t)dt [ e g(x)dx. The
function of two variables (¢, z)— > e~ f ( ) _59” g(x) is absolutely mtegrable over the
domain [0, 00) % [0, 00) with the same proof as We did When we showed the existence of
the Laplace transform. Then we can rewrite F(s fo fo e+) (1) g () dtda.
We can make a substitution now ¢ = v and ¢ + x = v. The domain [0, c0) X [0, 00)
can now be described as {(v,u) : v € [0,00)and u € [0,v]}. The Jacobian of the

1 0

117 1, so, the double integral becomes

transformation is J(z,t) = det

F(s)G(s) = /0Oo e [/Ov flu)g(v — u)du} dv = L(f *g)(s).
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The double integral can be understood in a limit sense (over rectangles) which
makes the above computation possible. [ |

Let us use this theorem to solve Problem 14, page 474. We need to find
the inverse Laplace transform of the function F(s) = We can rewrite

F(s) = = L(sint)(s)L(cos2t)(s)

s
54455244
s
(s2+1)(s2+4)

So, L7HF)(t) = fot sinzcos2(t —x) = fot 2[sin(2t — z) + sin(3z — 2¢)]dz. Then

LTHF)(t) = jcos(2t — x)[3Zh — § cos(3z — 2t) |35 =

5(cost — cos 2t) — ¢(cost — cos 2t) = 5(cost — cos 2t),t > 0.

Theorem 5.4.3. [Integration of Transform formula] Suppose that f is piece-
wise continuous for t > 0, has exponential type at infinity (with constant c¢) and

t
that lim+ @ exists . If the Laplace transform of f is I, then the improper integral
t—0

[ F(u)du exists for every s > ¢ and

c (@) (s) = / " Fu)du,s > c.

Proor. Since F(s fo ~stf(t)dt the function F' is continuous. The im-
proper integral fs F(u du exists because of the estimate we got when we proved
the existence of the Laplace transform. Then

/8 " Fu)du = / h /0 et dbdu,

It turns out that the function of two variables e * f(t) is integrable on the domain
[s,00) x [0,00) in the sense of limits on arbitrary rectangles and so the interchange
of the integrals is possible. Thus

/:o F(u)du:/ooo UOO e“tdul f(t)dt:/ooo e“@dt

t
As we can see the hypothesis that hm+ & exists can be relaxed to the exis-
t—0

tence of the integral fo ‘fg—t'dt.

We are going to work out Problem 20, page 474. We need to find the Laplace
transform of g(t) = £=222t Consider the map f(t) = 1 —cos 2t. We have L(f)(s) =
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t
1 5 Since lim 0 _ = 0 we can apply Theorem [5.4.3| and obtain L(g)(s) =
s T P o+t
~1 u ~ s?2+4
/S E_u2+4du_l \/u27| =In . for all s > 0.

Theorem 5.4.4. [Differentiation of the transform] If f is piecewise continuous
and of exponential type (with constant c), then if F is the Laplace transform of f

we have
L(—tf(t))(s)=F'(s), s>c

Proor. Since F(s) = [[e ® f(t)dt and L(—tf(t))(s) = [;° e !(—tf(t))dt

exist, we can calculate
F(s) — F(sp) X et — et — (5 — o) (—t)e 50!

= —cvuu»wazé =

Using the generalized mean value theorem: h(b) = h(a) + (b — a)h/(a) +
(b a) h”(g) for some £ € (a,b), we obtain (h(u) = e ™, a = sg, b = s)

—st —sot —sot
e — (5 s0) (TN 25~ S0 tton g() € (s, 9).
S — 8o 2

Hence

F(s) = F(so) _

S — 8o

(5.7) |

ety < 50 [T e o0

as s tends to so. The integral [~ e *"?|f(t)|dt is finite if sy > ¢, fact that goes the
same way as the existence of the Laplace transform. Then passing to the limit in

(5.7) (s = sg) we get L(—tf(t))(s) = F'(s), s> c. |

Applying this theorem several time we get:

Corollary 5.4.5. Under the same assumptions of Theorem for every n € N,
Lt f(1))(s) = (=1)"F™(s), s > c.

Example: Problem 26, page 474. We need to calculate the inverse Laplace trans-
3

“mE 3 ;
e 1 (s+22+9
is the inverse Laplace transform of F' then by Theorem we get —tf(t) =

LN~ oers) = —¢ %sin3t. This gives f(t) = e~ 283

form of F(s) = arctan% Since F'(s) =
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Another application of this formula is finding a nontrivial solution of the
Bessel’s type equation in Problem 34: tz” + (4t — 2)a’ + (13t — 4)z = 0, z(0) = 0.
We denote by X (s) = L(z(t))(s). We have L(z")(s) = s*X(s) — a where 2/(0) = a,
and L(2)(s) = sX(s). Hence L(ta") = —L(s*X(s) — a) = —2sX(s) — s*X'(s),
L(tx')(s) = —X(s) — sX'(s) and L(tz) = —X'(s).

Then the equation becomes —25X (s) — s2X"(s) —4X (s) — 4sX'(s) — 25X (s) —

13X’(s)—4X(s) = 0. This reduces to a simple differential equation in X (s): ))((I((::)) =
8+ 4s
(s+2)24+9
Integrating we get In | X(s)| = —21In[(s + 2)*> + 9] + C and from here X (s) =
m. Because E‘l([(sﬂkw)(t) = %72 sin 3t, then we can use the convolution
formula to get z(t) = gfot(e_2u sin 3u) (e 2= sin 3(t — u))du = kel_;t Otcos(6u —

3t) — cos 3tdu. Therefore x(t) = ki—?(w b —tcos3t) = 1“5;% (sin 3t — 3t cos 3t)

or |z(t) = Ae *(sin 3t — 3t cos 3t), t > 0.

Now we are going to review all the important formulae that we have introduced
so far:
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f(t) on [0, 00)

F(s) = L(f)(s)

FOIS Met | et s > ¢
t",neN S,Z%, 5s>0
e cos bt %, 5>a
€atSiHbt m, S >a
sS—a 2_p2
te™ cos bt [((52_1)(1)++;2]2, s>a
te® sin bt %, Ss>a
Uq (1) £, 5>0
t (a > —1) et s> 0
e siz, s> Re z
e #, s> Re z
e*t f(t) F(s—2z),s>c+ Rez
f'(®) sF(s) — f(0), s> ¢
(f*9)(t) F(s)G(s), s > c
tf<t) _F,<S)7
fot f(z)dz F(s)/s,s>c
)/t [ F(u)du, s > ¢
some less important
I
(—1)l= —tanh%, 5>0
s
#eat(Sin bt — bt COS bt) m
L e (sin bt + bt cos bt) B CIL
2b [(s—a)2+b2]?
e cosh bt ﬁ, 5>a
e sinh bt

b
(s—a)2—b%> 5>a

Homework:

Section 7.3 page 474, Problems 1-38.

99
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5.5 Lecture XVIII

Quotation: “When a truth is necessary, the reason for it can be found
by analysis, that is, by resolving it into simpler ideas and truths until the
primary ones are reached. It is this way that in mathematics specula-
tive theorems and practical canons are reduced by analysis to definitions,
azioms and postulates. 7 (Leibniz, 1670)

5.5.1 Periodic and piecewise continuous input functions

as

We have already showed that £(u,)(s) =
0 t <
ualt) = { fort =

1 fort>a.
Theorem 5.5.1. Let us consider a > 0. If L(f)(s) exists for s > ¢ then
L(ua(t)f(t = a))(s) = e L(f)(s), for s> a.

Proor. This is just a simple calculation:

, s > 0, where

L(ua(t)f(1))(s) = [~ e ua(t)f(t —a)dt = [[" e~ f(t — a)dt =

fooo et f(y)du = e L(f)(s).
for all s > c. [ |

Let us observe that if 0 < a < b then u, — u; is the function:

0 forz<a
Ugp(t) = < 1 for x € [a,b),
0 for x > 0.

whose graph is

Figure 12
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and it is called the characteristic function of the interval [a, b). Let us solve Problem
18, page 484: we need to compute the Laplace transform of

cossmt if 3<t<5h
ft) = 2
0 if t<3 or t>5h.

This function is essentially the same as ¢ — ug5(t) cos imt for ¢ € [0,00). Hence
the Laplace transform of it is L(us(t)cos ) — E( 5(t)cos T). Because cos g =

(t723)71' + 3771—) — sin (t=3)m 3 (t725)71' + 5771—) — —gin (1‘/725)7r7

and similarly for cos Z = cos(
2m
452 + 72 |

cos(

we obtain that | L(f)(s) = (e + &™)

The last theorem that we are going to do is about the transform of a periodic
function:

Theorem 5.5.2. [Laplace transform of periodic function] If f is periodic
piecewise continuous with period p on [0,00) the Laplace transfrom of f exists and

LOF)(s) = — /pe—stf(t)dt, 50,

1—e?s ),

Proor. This is also a calculation:

75 o k —s
= Jo e~ f(t)dt =372, fkp(erl) e” f(t)dt
Zk:o f(f] “sthps f (¢ 4 k;p)dt =Y pe M [Tem tf(t)dt = =5 [ e f(t)dt
1

o0
using the sum of the geometric progression et = — — [ |
1—ep
k=0

We are going to use this Theorem to compute the Laplace transform of the
function in Problem 28, page 485. The graph of f (for a = 1 is shown below):

1y

Figure 2

Basically we need to compute

2a a )

t 1 1—1(1 sa

/ €—Stf(t)dt - / e Stdt — e—st(_ _ _)‘ig _ ( + sa)e .
0 0
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1 —(1+sa)e™

So, the Laplace transform of f is | L(f)(s) 21— ¢ 200)
s — e—2sa

5.5.2 Impulses and delta function

Definition 5.5.3. The Dirac delta function at a, denoted by 0, is a transformation
on continuous functions defined by 0,(g) = g(a) for every continuous function.

In general most of the maps ¢ having properties of linearity and bounded on
continuous functions defined for ¢ € [0, 00) is of the form ¢(g) = [~ g(t)h(t)dt. The
map J, is an example not of this form. When we have a differential equation of the
type, let’s say, as in Problem 2, page 495, " + 4z = g + 0, with initial conditions
x(0) = 2/(0) = 0, we interpret this as the model of movement of a mass (m = 1)
attached to a spring with no dashpot with two instantaneous blows of unit intensity
at moments t = 0 and ¢ = 7.

So if we apply both functions to the function t — e~ we get s X (s) +4X (s) =

1+ e*". Then we solve for X(s) = 521 1+ E;er and then take the inverse Laplace
sin 2t

2

The graph of this solution is shown below. This solution is still a continuous
function but it is not differentiable at every point.

in in2(t—m
transform z(t) = 2% + uw(t)s(Tt) or |z(t) = (1 4 u.(t))

Figure 3

Now we summarize all the important Laplace transform formulae that we have
studied so far:
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f(¢) on [0, 00) F(s) = L(f)(s)
(01 < Me INCRIOLOTE:
t", neN S,’l%, 5s>0
e cos bt (S_Z_W, 5>a
e sin bt (sfa%«Fbg’ s>a
te cos bt EE:Z;QIZQ, s>a
te® sin bt (SQ_bff);i)bQ, s>a
uq(t) €= 5>0
t (a > —1) et s> 0
et L s>Rez
e #, s> Re z
e*t f(t) F(s—2z),s>c+ Rez
f'(t) sk'(s) — f(0), s > ¢
(f *9)(t) F(s)G(s), s> ¢
tf<t) _F/(5>7
fot f(z)dz F(s)/s,s>c
)/t [ F(u)du, s > ¢
some less important
tanhs
(1)l 2 s>c
%e‘”(sin bt — kt cos bt) W
e (sin bt + kt cos bt) W
e cosh bt e S > G
e sinh bt (S_a)+_bQ, s>a
uq () f(t — a) e L(f)(s)
f(t) periodic f of period p = Jo f(t)dt

103

Homework:
Section 7.5 page 484, Problems 1-35.
Section 7.6, pages 495, Problems 1-8.
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Chapter 6

Power Series Methods

6.1 Lecture XIX

Quotation: “The heart of mathematics is its problems.” Paul Halmos

6.1.1 Power series review

The method that we are going to study in this Chapter applies to a variety of DE
such as the Bessel’s equation (of order n),

ZBQyH + xy/ + (332 - nQ)y — 0’

or Legendre’s equation

(1—a2%)y" —2xy +n(n+1)y=0
which appear in many applications.

A power series around the point x = a is an infinite sum of the form

o
(6.1) E an(z —a)"
n=0
where as usual the convergence is understood in the usual sense, i.e.
n
. k
lim E ag(z —a)
n—oo
k=0

105
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exists.

The series (2.27)) defines a function f(z) on a disc of radius R (called radius
of convergence ) centered at a: D,(R) := {z||z — a|] < R}.

The radius of convergence is given by the formula:

1
(6.2) 7= lim sup |an|%.

n—o0

The series converges at least for z = a but we are going to be interested
in series for which the radius of convergence is a positive real number or infinity.
Most of the elementary functions have a power series expansion around any point
which is not a singularity (all the derivative are defined there). The function defined
by a power series is continuous and differentiable on D,(R). Moreover the derivative
can be computed differentiating term by term. The derivative has the same radius
of convergence and hence the function is infinitely many times differentiable. The
coefficients a,, are given then by the formula:

This allows one to compute various power series for most of the elementary
functions. Two power series can be added or subtracted term by term. This corre-
sponds to adding or subtracting the corresponding functions. The product has to
be done in the Cauchy sense. The following theorem is important:

Theorem 6.1.1. [Identity Principle] If Y > ja,a™ = > > b,a™ for every x in
some open interval then a, = b, for alln > 0.

6.1.2 Series solutions around ordinary points

We are going to consider solving the DE

(6.3) y'+ P(x)y +Q(z)y =0

where P and () are functions defined around point a. If these functions have a power
series expansion around a then the point x = a is called an ordinary point for
(6-3). A point a will be called singular for (6.3)) if at least one of the functions P
or () is not analytic around a (which means there is no power series centered at a
that sums up to the given function). The next theorem shows what happens in the
situation of ordinary points.
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Theorem 6.1.2. There are two linearly independent solutions of around every
ordinary point whose radius of convergence is at least as large as the distance from
a to the nearest (real or complex) singular point of .

Let us solve the Legendre Equation:

(6.4) (1—2?)y" —2zy + ala+ 1)y =0,

or if we put it in the form (6.3) we get

—2z ala+1)
! /
Y +1—:11:2y+ 1 — a2

y =0,

which makes it clear that ¢ = 0 is an ordinary point for (6.4). According to the
theorem above there are two linearly independent solutions that can be written as

power series whose radius of convergence is at least 1. Let us look for a solution of
o0

the form y(z) = Z apx®.

k=0
Then the equation (6.4) becomes

1—3(; Zk —1akx —QxZakkxk*1+a(a+1)Zakxk:0
k=0 k=0 k=0
or

oo

Zk—i—2 Yk + 1)agox —Zk — 1Daga” —QZakkx —i—oz(a—i—l)z Lt = 0.
k=0 k=0 k=0

Using the identity principle we get the following equations in terms of the
coefficients ay:

(k +2)(k + Dagpa — k(k — Vag — 2kag + aa + 1)ax = 0, k > 0.

This gives

(k—a)(k+a+1)

k>0
k+D)kt2) ™F=

(6.5) Ay2 =
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Instead of continuing this in the most general case we are going to make an
assumption here that may help to see how something interesting could happen here.

Let’s say a = 3. Then (6.5)) gives ay = —Fag = —6ay, a3 = —2a1 = —2ay,

as = —l%ag = 3ap, a5 = 0. From here we see that the next coefficients as1 = 0 for

k > 2. So, one of the solutions is y1(z) = ai(z — 32%) = 43z — ba®) = — 22 P3(x)
where Py(z) = (52® — 3x) is the called Legendre polynomial of degree 3. Similarly
for every a a non-negative integer n one of the solutions is just going to be a

polynomial which turns out to be the Legendre polynomial of degree n.
Next we rewrite (6.3) as

p(x) ,, q(z)

" P\Y) _
(6.6) y' =y 5y =0

Definition 6.1.3. The singular point x = 0 of 1s a regular singular point
if the functions p and q are both analytic around 0. Otherwise 0 is an irregular
singular point.

6.1.3 The Method of Frobenius

We are going to use a slightly modified version of power series method to solve
differential equations of second order for which x = 0 is regular singular point. As
before consider the equation written in the form

(6.7) *y" + zp(z)y + q(z)y = 0.

The idea is to look simply for a solution of the form
(6.8) x" Z arz®, x> 0.
k=0

We have the following theorem:

Theorem 6.1.4. Suppose that x = 0 is a regular singular point for and let
p(x) = Y oroper® and q(x) = Y ;7 pra® be the power series representations of p
and q. If we denote the solutions of the quadratic equation r(r — 1) + por +qo = 0
by r1 and ry then:

(a) if m and ro are real, say r1 > 1o, there exist a solution of the form (6.8
with r = 1rq;

(b) if r1 and ro are real, say r1 > 1ro, and r1 — ro is not an integer (i.e.
(po — 1)? — 4qo is not the square of an integer) the there exists a second linearly

independent solution of of the form with r = ro.
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Let us solve Problem 18, page 535. We need to solve the DE: 2zy”+3y'—y = 0.

In this case if we write this equation in the form (6.7)) we get 2%y” + %xy' -5y =0.

This gives x = 0 as a regular singular point and p(x) = % and ¢(r) = ¢. Hence
the equation in r becomes r(r — 1) + %r = 0 which has two solutions: 71 = 0 and
1

o = —5-

Therefore, according to the Theorem we must have two linearly indepen-
dent solutions of the form (6.8)). Working out the details of this we get

% k
i

yl(x) = )

ZH K2k + 1)

and

1
Ya(r) = ﬁ

18D fan |-
k=1

Homework:

Section 8.1, Problems pages 509-510, 23, 25 and 27,
Section 8.2, page 520, Problems 5, 6, 32, 35.

Section 8.3, page 5535, Problems 1-31, 35, 38 and 39.

6.2 Lecture XX

6.2.1 When r; —ry is an integer

We remind the reader the type of differential equation to which we have applied the
method of Frobenius:

(6.9) y' + @y’ + &;)y = 0.
X X

where z = 0 is a regular singular point of (6.11)), i.e., the two functions p and ¢
are analytic around x = 0.

We are going to take an example from the text to study what may happen in
the situation r; — ro is a positive integer.

Problem 28, page 535: xy” + 2y —4xy = 0. In this particular case p(z) = 2
and q(x) = —42?. The equation for r (indicitial equation ) becomes r(r — 1) +
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2r = 0 with solutions r; = 0 and ro = —1. This makes r; — ro an integer. We
(o]

are going to study the existence of the second solution: y = z~! Zak;ﬂk. Since

Z — Dagz"? and ¢y’ = Z(k‘ —1)(k — 2)apz®3, after we substitute in the

k= k=0
given equatlon we get:

Z — apzt? + Z 2(k — Dagx*2 — Z4akxk =
k=0 k=0 k=0
or . .
Z —1 k‘akx 2 Z4akxk = 0.
k=0 k=0

Since the first two terms in the first summation are zero we obtain only one
oo

summation if we shift the index (kK — 2 — k) and then combine the two: Z[(k +
k=0
1)(k 4 2)agyo — 4ag]z” = 0.
. ag
This gives agio = 4m for all & > 0.
4n P
(2n)1 0 A1 G2t = 1o T

Therefore a general solution of our equation is

From here we see that aq, = a; for all n > 0.

0 4m 2n

R Y T
T) = a0z ZO (2n)! “”z% 2n+ 1)

Let us observe that we actually get an analytic solution and one which is
unbounded around x = 0. Using the functions sinh and cosh we can re-write the
general solution as

sinh 2z
2x

So, in this case we have two solutions in the form (6.8]).

y(z) = agx™ ! cosh 2x + a;

To show that there are cases in which there is only one solution of the form
let us take Problem 39, page 536:

(a) Show that the Bessel’s equation of order 1,
2*y +ay + (2 -1y =0
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has exponents r1 =1 and ro = —1 at x = 0, and the Frobenius series corresponding
tor=11s
T -1
52 nl(n+1) '22”
n=0

(b) Show that there is no Frobenius solution corresponding to the smaller exponent

ro = —1; that is, it is impossible to determine the coefficients in
[ee]

(6.10) Yo(x) = 27 Z Cp”.
n=0

Solution: Let us start by differentiating and substituting in the Bessel’s equa-
tion with (6.10)) as recommended (calculations will cover both cases): yi(x) =

2 no Cn(n — D" and yj () = 3507 g en(n — 1)(n — 2)2"~.

The Bessel’s equation becomes

Z c(n —1)(n = 2)a" " + Z cn(n — Da™ 4 (2% — 1) Z ™t =0
n=0 n=0 =0

The first two sums can be combined together and together with the last sum
after multiplication by 22 — 1 and distributing:

Z cn[n? — 2n)z" 1t + Z cpt" T =0
n=0 n=0

Shifting the index of summation in the first sum we get

ch+2n +2n) "“—i—ch =

n=-—2

For n = —2 we get ¢y x 0 = 0 which is satisfied for every ¢y. For n = —1 we
obtain ¢; = 0. For n = 0 we get ¢, X 0+ ¢g = 0 which implies ¢ = 0. For n > 1 we
have ¢, = —n(fl—’jrg). This implies cg, 41 = 0 for all n > 0 and

Con . Con Con—2 - o (—=1)"cy

on2n+2) nam+122  (n—Dann+ 124 77 nl(n+1)1220

Cony2 = —
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for all n > 1. The final form of ¥, is

o o o0
yo(w) = 27! E cpx™ =zt E O E Conr? 2 =
n=0 n=1 n=1

00 n = (_1)nx2n
:I‘Z%CQ,”_’_Q:LQ = CQZ.X;W = 202:]2(1’).

This shows both parts (a) and (b) of the problem. [

In general the equation
(6.11) 22y + ap(x)y + q(x)y =0
has a second solution which is described by the next theorem:

Theorem 6.2.1. | The Exceptional Case| Assume v = 0 is a reqular singular
point for and vy > 1y are the two roots of r* + (po — 1)r + qo = 0.

(a) If ri = 1o then the equation has two linearly independent solutions
of the form:

yi(z) = 2™ Z ax", (ag #0),

n=0

yo(z) = yy(2) Inw + 2™ Z bpa".

n=0

(b) If 1 —r9 = N with N € N, then the equation has two linearly
independent solutions of the form:

yi(z) = 2" ana”, (ag #0),
n=0

y2(z) = Cyy(x) Inz + 2™ Z byx".
n=0
Homework:

Section 8.3, page 535, Problems 1-31, 35, 38 and 39.
Section 8.4, pages 551-552, Problems 1-8, 18, and 21.
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Fourier Series

7.1 Lecture XXI

Quotation: “Fven fairly good students, when they have obtained the
solution of the problem and written down neatly the argument, shut their
books and look for something else. Doing so, they miss an important and
instructive phase of the work. ... A good teacher should understand and
impress on his students the view that no problem whatever is completely
exhausted. ” George Pdélya

7.1.1 Fourier series, definition and examples

Another type of expansions for functions that can be helpful in computing solutions
of differential equations is the Fourier series expansion. The method of using a differ-
ent type of expantion works basically the same way as with power series: substitute
in the given differential equation, find a recurrence for the coefficients and then use
that to determine the coefficients and the function if possible. In general a function
that has a Fourier expansion will have to be periodic. So, it is natural to work with
periodic functions defined on R and we will take for simplicity the period to be 2.

Definition 7.1.1. Assume f is a piecewise continuous function of period 27 defined
on R. The Fourier series of f is

(7.1) % + ;(an cosnt + by, sinnt).

where a, = £ [T f(t)cosntdt for n = 0,1,2,3,... and b, = % [T f(t)sinntdt for
n=1,2,3,... are called the Fourier coefficients.

113
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Let us see an example. Suppose we take Example 21, page 580. The function
is f(t) = t* for t € [—m,7]. Then the Fourier coefficients of f are ag = % [7 t3dt =

' / innt
/ £(t) cos ntdt = (tQSmn T L)
n n
4( 1

forn=1,2,3,... and

1 [7 1 t innt t
b, = —/ f(t)sinntdt = — (—tlei T Vi G S Sl T_rﬂ> =0,
7r n

T ). T nz " n3
forn =1,2,3,.... We will see later that this gives the following formula
T = cos 2nt =L cos(2n 4 1)t
7.2 e — —4 _—
(72) 3+; n? ; (2n+1)% 7

which we will call the Fourier series expansion of f. We have to assign a meaning to
the series in . As usual, we will understand by it the limit of the partial sums.
If one plots the partial sums of against ¢t — 2 (in our plot on [—3m, 37| and
taking only five terms in each sum) will get

D [ L

Figure 1

This suggests that the series converges to actually the given function. This
usually is the case if the function is more than continuous (not true for continuous
functions only) and the convergence is uniform if the function has a derivative which
is piecewise continuous.

Theorem 7.1.2. [Dirichlet] Suppose f is a periodic function of period 2w which
15 piecewise differentiable. The Fourier series converges

(a) to the value of f(t) for every value t where f is continuous;

(b) to the value 5(f(t+0) + f(t —0)) at each point of discontinuity
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Let us take an example where the function is discontinuous. We consider the
function

-1 for te (—mn,0)
g(t) =
1 for te|0,n]

extended by periodicity for all real axis. Then a, = 0 for all n =0,1,2,3,4, ... and
b, = %foﬁ sin ntdt = h;l)) foralln=1,2,3,4,....

mn

4 o sin(2n + 1)t
Then g(t) = %Z % for all t € (—m,m]{0}. We can see that the part

(b) of the Theorem is satisfied. By taking ¢ = 7, we observe that this is a

point of continuity for g and g(5) = 1 and hence the Theorem implies that

_ 4N (=17
1—7rzn=02+1 or

s = (=1
(7.3) Z:ZQ(n-i—)l

n=0

One of the important formulae that one needs in the calculation of the Fourier
coefficients is given in Problem 22, page 587: show that if p(t) is a polynomial of
degree n, and g is a continuous function,

(7.4) /p(t)g(t)dt = p(t)Gr (1) = ' ()G (t) + .. + (=1)"p" ()G () + C

where Gy is the antiderivative of Gy, for all k =0,1,....,n and Gy = g.
This can be checked by differentiation:

%(p(t)Gl(t) =P (O)Ga2(t) + ... + (=1)"p™ () Gy (1) =
P()GL(t) = p"(1)Ga(t) + ... + (=1)"p" (1) Gy (8)+

pt)g(t) — P')G1(t) + .. + (=1)"p" ()Gau(t) = p(t)g(t).

7.2 General Fourier Series

In general if we have a function which is periodic of period 2L then we can still
expand it in terms of trigonometric functions but we need to change the period.
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Definition 7.2.1. If f is a piecewise continuous function of period 2L then the
Fourier series of f is

(7.5) + Z (an COST + b, sin nTmf>

where a, = %ffL f(t)cos ®dt forn = 0,1,2,3,... and b, = %LLL f(t)sin “dt for
n=1,2,3, ... are called the Fourier coefficients off on [0,2L].

A similar theorem to Theorem[7.1.2]takes place in the case of periodic functions
of period 2L (L > 0). Let us look at the Problem 17, page 587. The function f is
periodic of period 2 and defined by f(t) =t for t € (0,2). We want to show that

2 = sinnt
7.6 t)=1—— .
(7.6) ==
In this cases L = 1. Let us compute ﬁrst ap = fo tdt = £12 = 2. Forn > 1 we

have a,, = fo t cos nrtdt. Using formula we get

sinnmt ,  cosnmt

G = T o n22|_0

For n > 1 we have b, = fOQtsin nrtdt. Similarly we get

cosnnmt , sinnwt , 2
nm n4m

o=

)
nm

and so ([7.6]) takes place. Substituting ¢ = 1/2 in (7.6]) will give
TN (D"
4 nzzo 2n + 1

which is nothing but the Leibniz’s identity (series) ([7.3]).

From formula - let us derive another important series that is so common
in mathematics. Denote by z the sum of the series > | n2

Substituting ¢ = 7 in 1) we get 12 = % + 4x which will give xz = %2. Therefore

1
— ’
—n 6
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a formula discovered by Euler. Euler and Leibnitz identities seem to be such curious
facts in mathematics since they relate all the whole numbers with the number 7.

Homework:

Section 9.1, page 580, Problems 1-31.
Section 9.2, pages 586-587, Problems 1-25.
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Chapter 8

Miscellaneous Problems

This is a collection of problems that will help the reader to acquire an appreciation
for differential equations:

Problem 1: Let u be a differentiable function defined on R such that

du

= = au(t) = bu(t)’ + h(t)

(8.1)

where h is continuous and periodic of period 7" on R. Show that there are at most
two T-periodic solutions of (8.1)). Also, show that if there are two, they do not
intersect.

119
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