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Preface

These lecture notes were written during the two semesters I have taught at the
Georgia Institute of Technology, Atlanta, GA between the fall of 2005 and spring of
2006. I have used the well-known book by Edwards and Penny [5]. Some additional
proofs are introduced in order to make the presentation as comprehensible as possi-
ble. Even that the audience was mostly engineering major students I have tried to
teach this course for mathematics majors.

I have used the book of F. Diacu [4] when I taught the Ordinary Differential
Equation class at Columbus State University, Columbus, GA in the Spring of 2005.
This work determined me to have a closer interest in this area of mathematics and
it influenced a lot my teaching style.

1
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Chapter 1

Solving various types of
differential equations

1.1 Lecture I

Quotation: “The mind once expanded to the dimensions of larger ideas,

never returns to its original size.” Oliver Wendell Holmes

Notions, concepts, definitions, and theorems: Definition of a dif-
ferential equations, the definition of a classical solution of a differential
equation, classification of differential equations, an example of a real-
world problem modeled by a differential equation, definition of an initial
value problem.

If we would like to start with some examples of differential equations, before
we give a formal definition, let us think in terms of the main classes of functions that
we studied in Calculus such as polynomial, rational, power functions, exponential,
logarithmic, trigonometric, and inverse of trigonometric functions, what will be some
equations that will be satisfied by these classes of functions or at least some of these
types of functions?

For polynomials, we can think of a differential equation of the type:

(1.1)
dny

dxn
(x) = 0 for all x in some interval,

(with n ∈ N) whose “solutions” would obviously include any arbitrary polynomial
function y of x with degree at most n− 1. In other words y(x) = a1x

n−1+ a2x
n−2+

... + an is a polynomial function that satisfies (1.1). Let us notice that there are n
constants that we can choose as we like in the expression of y.

3

https://en.wikipedia.org/wiki/Oliver_Wendell_Holmes_Jr.
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Let us say we consider a power function whose rule is given by y(x) = xα

with α ∈ R. Then by taking its derivative we get dy
dx
(x) = αxα−1, we see that we

can make up a differential equation, in terms of only the function itself, that this
function will satisfy

(1.2)
dy

dx
(x) =

αy(x)

x
, for x in some interval contained in (0,∞).

For a rational function, lets say y(x) =
x+ 1

2x+ 1
, x ∈ R \ {−1

2
}, if we take the

derivative of y(x), we get
dy

dx
(x) = − 1

(2x+ 1)2
and since y(x) =

1

2
+

1

2(2x+ 1)
a

relatively natural way to involve the derivative and the function will be:

(1.3)
dy

dx
(x) = −(2y(x)− 1)2.

For a general rational function, it is not going to be that easy to find a cor-
responding differential equation that will be similar to (1.3), in which the variable
x doesn’t appear explicitly as in (1.2). These equations will be called later au-
tonomous differential equations, as part of a wider class called separable equations.
In such cases, most of the time the independent variable is dropped from the writing
and so a differential equation as (1.3) can be rewritten simply as y′ = −(2y − 1)2.

Next, we are interested in finding a similar differential equation satisfied by
an exponential function such as y(x) = Cekx, for some real constants C and k. It is
easily seen that such a candidate can be:

(1.4)
dy

dx
(x) = ky(x).

If we take f(x) = sin x and g(x) = cos x then we see that these two functions satisfy
the following system of differential equations:

(1.5)


df

dx
(x) = g(x)

dg

dx
(x) = −f(x).
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Let us observe that both functions satisfy the differential equation f ′′ + f = 0.

Now we are going to consider f(x) = arctan x, x ∈ R. Because the derivative of f
is f ′(x) = 1

1+x2 we can build a differential equation that f will satisfy:

(1.6) f ′(x) =
1

1 + (tan f(x))2
or f ′ = (1 + tan2 f)−1.

Finally a function of two variables such as f(x, y) = x2 − y2, x, y ∈ R2 satisfies:

(1.7)
∂f 2

∂x2
+

∂f 2

∂y2
= 0.

At this point we have enough examples and we will give a formal definition of a
differential equation:

Definition 1.1.1. A differential equation, shortly DE, is a relationship between a
finite set of functions and their derivatives or partial derivatives of various order.

Depending upon the domain of the functions involved, we have ordinary differential
equations, or shortly ODE, when only one variable appears (as in equations (1.1)-
(1.6)) or partial differential equations, shortly PDE, (as in (1.7)).

From the point of view of the number of functions involved we may have one function,
in which case the equation is called simple, or we may have several functions, as in
(1.5), in which case we say we have a system of differential equations.

Taking into account the structure of the equation we may have linear differential
equation when the simple DE in question could be written in the form:

(1.8) a0(x)y
(n)(x) + a1(x)y

(n−1)(x) + ...+ an(x)y(x) = F (x),

or if we are dealing with a system of DE or PDE, each equation should be linear
as before in all the unknown functions and their derivatives. In case such represen-
tations are not possible we are saying that the DE is non-linear. If the function F
above is zero the linear equation is called homogenous. Otherwise, we are dealing
with a non-homogeneous linear DE. If the differential equation does not contain (de-
pend) explicitly on the independent variable or variables we call it an autonomous
DE. As a consequence, the DE (1.2), is non-autonomous. As a result of these defini-
tions the DE’s (1.1), (1.2), (1.4), (1.5) and (1.7) are homogeneous linear differential
equations.
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The highest derivative that appears in a DE gives the order. For instance the
equation (1.1) has order n and (1.7) has order two.

Definition 1.1.2. We say that a function or a set of functions is/form a solution
of a differential equation if the derivatives that appear in the DE exist on a certain
domain and the DE is satisfied for all the values of the independent variables in that
domain.

This concept is usually called a classical solution of a differential equation. The
domain for a DE is usually an interval or a union of intervals.

As an exercise, check that the function of two variables F (x, t) = u(x+vt)+v(x−vt),
where u and v are twice differentiable functions and v is some non-zero real number,
is a solution of the 1-D wave equation:

(1.9)
∂2F

∂x2
=

1

v2
∂2F

∂t2
.

Next, we are going to deal with an example of DE that has rather a more real-world
flavor than a theoretical one like the ones we have encountered so far.

Problem 1.1.3. [Calculus Textbook by Stewart] We have a man (John) and
his dog (Buddy) running on a straight beach (see Figure 7.1.1). At a given point
in time, when the dog is 12 m from his owner, John starts running in the direction
perpendicular to the beach with a certain constant speed. Buddy runs twice as fast
and always toward John. The question is “where are they going to meet?”

Solution: Let us assume that Buddy runs on a path given by the graph of a
function f as in the figure above. Suppose that after a certain time, t, Buddy is at a
position (x, f(x)) and John is on the y-axis at (0, vt) where v is his speed in meters
per second (assumed constant) of John. The fact that Buddy is running toward
John at every time t, is going to give us a DE. This condition can be translated into
the fact that the tangent line to the graph of f at (x, f(x)) passes through (0, vt).

The equation of the tangent line is Y − f(x) = f ′(x)(X − x) and so the
intersection with the y axis is vt = f(x) − f ′(x)x. Let us assume the distance
between Buddy and John is originally a (a = 12 in this problem). Buddy is running
the distance

∫ a

x

√
1 + f ′(s)2ds which is supposed to be twice as big as vt (Buddy’s

speed is given to be twice as big v). Hence we get the equation
∫ a

x

√
1 + f ′(s)2ds =

2(f(x)−f ′(x)x) in x, for every x in the interval (0, a). By the Fundamental Theorem
of Calculus, differentiating with respect to x we obtain: −

√
1 + f ′(x)2 = 2(−xf ′′(x))

or
f ′′(x)√
1 + f ′(x)2

=
1

2x
, x > 0.
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ENDING POINT

STARTING POINT

John

Buddy

B
t

Figure 1.1: The man and his dog’s trajectory

Integrating with respect to x gives

ln(f ′(x) +
√
1 + f ′(x)2) = ln k

√
x,

for some constant k > 0. Since f ′(a) = 0 we determine k right away to be k = 1√
a
.

Solving for f ′(x) gives f ′(x) = (
√
x√
a
−

√
a√
x
)/2. Integrating again with respect to x

we obtain f(x) = x
√
x

3
√
a
−

√
ax + C for another constant C. Since f(a) = 0 we get

C = 2a/3. Therefore f(0) = 2a
3
. So, the dog and its owner are going to meet at 8

meters from the point where John was when the “race” began.

In general, we like to know whether or not, of course under certain circum-
stances, a DE has a unique solution so that we may talk about the solution of the
DE. This thing may happen but in the the general situation, this is hardly the case
without some extra conditions such as initial conditions. To accomplish such a thing
we usually consider the so-called initial value problem which takes the following form
when we are dealing with a single, first-order ODE:

(1.10)


dy
dx
(x) = f(x, y(x)), x ∈ I,

y(x0) = y0, x0 ∈ I, y0 ∈ J, I × J ⊂ Domain(f),
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where I and J are open intervals. For a system of ODE or a higher order ODE the
initial value problem associated to it takes a slightly different form. We are going
to see those at the appropriate time.

Homework: Problems 1-12, 27-31, 34, 37-43, 47 and 48, pages 8-9.

More challenging problems:

(a) Show that the initial value problem equation f ′′ + f = 0, f(0) = f ′(0) = 0 has
only the trivial solution f ≡ 0.

(b) Show that the equation f ′′+f = 0 has only the solution f(x) = C1 sinx+C2 cosx
for x ∈ R, and some constants C1 and C2.

[PutnamA3, 48
th, 1987] Let us consider the function y = y(x) twice differ-

entiable, satisfying y′′(x)− 2y′(x) + y(x) = 2ex for all real x.

(i) If y(x) > 0 for all x, is it true that y′(x) > 0 for all x ? (include your
arguments for the answer)

(ii) If y′(x) > 0 for all x, is it true that y(x) > 0 for all x ? (include your
arguments for the answer)
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1.2 Lecture II

Quotation: “ An idea that can be used once is a trick. If it can be used
more than once it becomes a method.” George Polya and Gabor Szego

Notions, concepts, definitions, and theorems: Methods of study
for differential equations, a/the general solution of a differential equa-
tion, particular solution, velocity and acceleration example, slope field
and solution curves, existence theorem and an existence and uniqueness
theorem.

We say that differential equations are studied by quantitative or exact methods
when they can be solved completely (i.e. all the solutions are known and could be
written in closed form in terms of elementary functions or sometime special functions
(or inverses of these type of functions). This reduces the study of DE to the study
of functions of one or more real variables given in an explicit or implicit way.

As an example let us consider the equation in Exercise 4, page 16

(1.11)
dy

dx
=

1

x2
.

If we rewrite the equation as d
dx
(y(x) + 1

x
) = 0 we see that we are dealing with

a function whose derivative is zero. If we talk about solutions defined on an interval,
the Mean Value Theorem from Calculus, tells us that y(x)+ 1

x
= C for some constant

C and for all x ∈ I, I an interval not containing zero. Therefore any solution (as
long as we consider the domains of solutions intervals like I) of the DE in (1.11) is
of the form y(x) = C − 1

x
for x ∈ I. So, we were able to solve the equation (1.11)

exactly. To finish the Exercise 4, page 16, we determine C such that the initial value
condition, y(1) = 5, is satisfied too. This gives C = 6 and y(x) = 6x−1

x
for all x ∈ I.

There are also some other types of methods, called analytical methods or qual-
itative methods in which one can describe the behavior of a DE’s solution such as
existence, uniqueness, stability, chaotic or asymptotic character, boundlessness, pe-
riodicity, etc. without actually solving it exactly. This is an important and relatively
new step in the theory of DE. Important because most of the differential equations
cannot be solved exactly and are relatively new because they all started mainly at
the end of the 19th century. One of the mathematicians who pioneered in this area
was Henri Poincaré.

We can add to the list another type of method for studying DE to which are
numerical methods. These methods mainly involve the use of a computer, a specially
designed software following the procedure given by an approximation algorithm. In
this part of mathematics one studies the algorithms and the error analysis involved
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in approximating the solution of a DE that in general cannot be studied with exact
methods. Very good approximations could be obtained most of the time only locally
(not too far from the initial value point).

Definition 1.2.1. A general solution of a DE of order n is a solution that is given
in terms of n independent parameters. A particular solution of a DE (relative to a
general solution) is a solution that could be obtained from that general solution by
simply choosing specific values of the parameters involved.

If all the solutions of DE are particular solutions obtained from a general
solution then this is referred to as the general solution.

As an example, we are going to show later that the general solution of the
second order linear equation y′′ +4y′ +4 = 0 is y(x) = (C1 +C2x)e

−2x for all x ∈ I.

Another example is the particular case of the movement of a body under the

action of a constant force according to Newton’s second law mechanics: m
→
a =

→
F .

This implies that if we denote the position of the body relative to a fixed point in
space by x(t) (the dependent variable here being the time t, and units are fixed but
not specified). Integrating twice the equation

(1.12)
d2x

dt2
(t) = a,

we get

(1.13) x(t) = at2/2 + v0t+ x0, t ∈ R,

where a is the constant acceleration, v0 is the initial velocity and x0 is the initial
position. We can look at this as the general solution of the equation (1.12).

As an application let us work the following problem from the book (No. 36,
page 17).

Problem 1.2.2. If a woman has enough “spring” in her legs to jump vertically to
a hight of 2.25 ft on the earth, how high could she jump on the moon, where the
surface gravitational acceleration is (approximately) 5.3 ft

s2
?

Solution: From the equation (1.13) we see that whatever her speed is initially,
say v0, on earth, she is going to get to a maximum height h = v0t − gt2/2 where
t is given by the condition that dx/dt = 0 or v0 − gt = 0. Hence, we get h =

v0
v0
g
− g(v0

g
)2/2 or h =

v20
2g
. (Notice that, so far, this is basically solving Problem 35,

page 17). From this we can solve for v0 and obtain v0 =
√
2gh. On the moon she
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is going to use the same initial velocity (this is saying that the energy is the same).

Hence hmax =
v20
2gm

= 2gh
2gm

= gh
gm

or hmax = 32×2.25
5.3

= 13.58 ft.

From now on in this Chapter we are going to concentrate on first order, single,
ODE of the form:

(1.14) y′ = f(x, y) or
dy

dx
(x) = f(x, y(x)).

We are trying to solve for y as a function of x. The best thing here is to look
at an example. Let us take the example from the book, page 18, i.e. y′ = x2 + y2

whose solution is not expressible in terms of simple functions. If we try Maple on
this we get

y(x) = −x
BesselJ(−3/4, x2/2)C +BesselY (−3/4, x2/2)

BesselJ(1/4, x2/2)C +BesselY (1/4, x2/2)
.

We will learn later about Bessel functions which appear in the above expression of
the general solution. This expression is useful if we want to do numerical calculations
since Bessel functions can be expressed in terms of power series.

On the other hand if we imagine that at each point of coordinates (x, y) in
the xy-plane we draw a little unit vector of slope f(x, y) = x2 + y2 then we get the
picture below:

Vector / slope field

and we kind of see how the solution curves should look like. We are drawing next (of
course, using a special tool like Maple) the solution curve passing through (0,−1)
for instance.
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Figure 3

It seems like the vector field in Figure 2 defines uniquely the solutions curves. We
are asking then the two fundamental questions in most of the mathematics when
dealing with equations:

� When do we have at least a solution for (1.14)?

� If there exist a solution of (1.14) is that the only one?

The first problem is usually referred as existence problem and the second as
the uniqueness problem. In general, in order to obtain existence for the DE (1.14)
we only need continuity for the function f :

Theorem 1.2.3. (Peano) If the function f(x, y) is continuous on a rectangle
R = {(x, y)|a < x < b, c < y < d}, and if (x0, y0) in R, then the initial value
problem

(1.15)


dy
dx
(x) = f(x, y(x))

y(x0) = y0,

has a solution in the neighborhood of x0.

We need more than continuity in order to obtain uniqueness:

Theorem 1.2.4. (Cauchy) Let f(x, y) be continuous such that the derivative ∂f
∂y
(x, y)

exists and it is continuous on a rectangle R = {(x, y)|a < x < b, c < y < d}, and
if (x0, y0) in R, then the initial value problem (1.15) has a solution which is unique
on an interval around x0.
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As an example we will look at Problem 30, page 28.

Problem 1.2.5. Verify that if c is a constant, then the function defined piecewise
by

(1.16) y(x) =


1 if x ≤ c

cos(x− c) if c < x < c+ π

−1 if x ≥ c+ π

satisfies the differential equation y′ = −
√

1− y2 for all x ∈ R. Determine how
many different solutions (in terms of a and b) the initial value problem{

y′ = −
√

1− y2,

y(a) = b

has.

Solution: It is not hard to see that the function y given in (8.1) is differentiable
at each point and its derivative is actually

(1.17) y′(x) =


0 if x ≤ c

− sin(x− c) if c < x < c+ π

0 if x ≥ c+ π

Hence if x ≤ c or x ≥ c + π then the equation y′ = −
√

1− y2 is satisfied because

y′ = −
√

1− y2 = 0 . If c < x < c + π then 0 < x − c < π and then sin(x − c) is

positive, which implies
√

1− cos(x− c)2 = sin(x−c) and so the equation is satisfied
in this case also.

For the second part of this problem, it is clear that if |b| > 1 we do not have any
solution because

√
1− y(a)2 is not a real number. If b = 1, we have infinitely many

solutions, by just taking c > a, then the y(x) defined by (8.1) is a solution of the
initial value problem in the discussion. Similarly, we get infinitely many solutions if
b = −1, in which case we have to take c + π < a or c < a − π. If −1 < b < 1 we
have a unique solution around the point a by Cauchy’s Theorem but not on R.

Homework:

Section 1.2 pages 15–17: 1-5, 11-15, 35 and 36;

Section 1.3 pages 26-27: 11-15, 27-33.
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1.3 Lecture III

Quotation: “ Hardy, Godfrey H. (1877 - 1947) I believe that mathe-
matical reality lies outside us, that our function is to discover or observe
it, and that the theorems which we prove, and which we describe grandil-
oquently as our ”creations,” are simply the notes of our observations. A
Mathematician’s Apology, London, Cambridge University Press, 1941. ”

Type of equations which can be solved with exact methods,
notions, real-world applications: Separable equations, implicit so-
lution, singular solution, natural growth or decay equation, and general
solution, Newton’s law of cooling or heating and its general solution, Tor-
ricelli’s law, liner first-order equations, and the general solution, mixture
problems.

One of the simplest cases in which the general solution could be found is the
so-called separable differential equations. This is an equation of the form

(1.18) y′ = f(x)g(y)

where f and g are, let us say continuous functions on their domains that each
contain an interval. Let us assume that g is not a constant. Then the function g is
not zero for a set containing an interval too, say I. Then the equation (1.18) can
be written equivalently as y′

g(y)
= f(x) if we assume that y ∈ I. We are going to

treat the situation g(y) = 0 separately. Suppose G(u) is an antiderivative of 1
g(u)

on I, and F and antiderivative of f . Then the equation in question is equivalent to
d
dx
(G(y(x))− F (x)) = 0 which means that the general solution should be

(1.19) G(y(x))− F (x) = C.

Most of the time, this equation cannot be solved in terms of y(x) and we just
say in that case that the solution, y(x), is given implicitly.

The case g(y0) = 0, will give solutions y(x) = y0 which are usually called
singular solutions unless (1.19) gives this solution for some value of the constant
(parameter) C.

As an example let us take a look at Newton’s law of cooling or heating: the
time rate of change of the temperature T (t) of a body immersed in a medium of
constant temperature M is proportional to the difference M − T (t).

This translates into

(1.20) T ′(t) = k(M − T (t))



22CHAPTER 1. SOLVING VARIOUS TYPES OF DIFFERENTIAL EQUATIONS

for some positive constant, which is a separable equation. Equivalently, this can be
written as T ′(t)

T (t)−M
= −k assuming that T (t) ̸= M at any time t. Integrating we

obtain ln |T (t) − M | = −kt + C which implies |T (t) − M | = e−kteC . If we make
t = 0 we get that eC = ±(T0 −M) where T0 is the initial temperature of the body.
Then the expression of T (t) becomes

(1.21) T (t) = M + (T0 −M)e−kt.

Let us observe that the equation (1.20) admits only one other solution, namely
the constant function T (t) = M , t ∈ R, and that this solution is actually contained
in (1.21) by simply taking T0 = M . The equality above then is the general solution
of (1.20) As an application of (1.21), let us take and solve Problem 43, page 42.

Problem 1.3.1. A pitcher of buttermilk initially at 25◦ C is to be cooled by setting
it on the front porch, where the temperature is 0◦ C. Suppose that the temperature
of the buttermilk has dropped to 15◦ after 20 minutes. When will it be at 5◦?

Solution: Using the formula (1.21), twice, we get T (20) = 25e−20k = 15 which
gives k = 1

20
ln(5/3) and so T (t) = 25e−kt = 5. This last equation can then be solved

for t to obtain t = ln 5
k

= 20 ln 5
ln 5/3

≈ 63 minutes.

Another application of separable DE is Torricelli’s law: suppose that a water
tank has a hole with area a at its bottom and cross sectional area A(y) for each
height y, then the water flows in such a way the following DE is satisfied:

(1.22) A(y)
dy

dt
= −k

√
y.

where k = a
√
2g and g is the the gravitational acceleration.

As an example of this situation let’s take problem 62, page 43.

Problem 1.3.2. Suppose that an initially full hemispherical water tank of radius 1
m has its flat side as its bottom. It has a bottom hole of radius 1 cm. If this bottom
hole is opened at 1 P.M., when will the tank be empty?

Solution: In the figure below we see that in order to calculate the cross-
sectional area A(y) corresponding to height y we need to apply the Pythagorean the-

orem: A(y) = π(1− y2). Hence the equation that we get is π 1−y2√
y

dy
dt

= −π 1
10000

√
2g.
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Figure 4

Integrating with respect to t we get 2
5
y

5
2 − 2y

1
2 = t

√
2g

10000
+C. Since at t = 0 we

have y = 1 the constant C is determined: C = −8
5
. We are interested to see when

is y = 0. This give t = 16000√
2g

≈= 3614 second since g is measured here in m/s2.

This is approximately 1 hours so the tank will be empty around 2 P.M. (14 seconds
after).

1.3.1 Linear First Order DE

These equation are equations of the type:

(1.23) y′ + P (x)y = Q(x), y(x0) = y0

where P and Q are continuous on a given interval I (x0 ∈ I). In order to solve
(1.23), the trick is to multiply both side by eR(x) where R(x) is an antiderivative of
P (x) on I. This way the equation becomes dy

dx
(y(x)eR(x)) = Q(x)eR(x) which after

integration gives yeR(x) =
∫
Q(x)eR(x)dx. So the general solution of (1.23) is

(1.24) y(x) = e−R(x)

∫
Q(x)eR(x)dx

Let us observe that if we have an initial value problem

(1.25)

{
y′ + P (x)y = Q(x),

y(x0) = y0

where x0 ∈ I, then we can take explicitly R(x) =
∫ x

x0
P (t)dt and (1.24) becomes

(1.26) y(x) = y0e
−R(x) +

∫ x

x0

Q(t)eR(t)−R(x)dt, x ∈ I.
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This proves the following theorem.

Theorem 1.3.3. Given that P and Q are continuous functions on an interval I,
the initial value problem (1.23) has a uniques solution on I given by (1.26).

As an example let’s solve the problem 12, page 54:

(1.27)

{
xy′ + 3y = 2x5,

y(2) = 1.

The equation becomes y′ + 3
x
y′ = 2x4. Since R(x) =

∫ x

1
3
t
dt = 3 ln x we obtain that

we need to multiply the equation (y′ + 3
x
y′ = 2x4) by eR(x) = x3. So, x3y′ + 3x2y =

2x7. The left hand side is dy
dx
(x3y(x)), so if we integrate from 2 to a we obtain

a3y(a)− 8y(2) =
∫ a

2
2x7dx. Equivalently, a3y(a)− 8 = 2(a

8

8
− 28

8
). So, the solution

of this equation on I = (0,∞) is y(a) =
a5

4
− 56

a3
for a ∈ I.

We are going to work out, as another application, the mixture problem 37 on
page 54.

Problem 1.3.4. A 400-gal tank initially contains 100 gal of brine containing 50 lb
of salt. Brine containing 1 lb of salt per gallon enters the tank at the rate of 5 gal/s,
and the well mixed brine in the tank flows at the rate of 3 gal/s. How much salt will
the tank contain when it is full of brine?

Solution: The tank is filling up at a speed of 2 gal/s and it is needed 300 gallons
more to be full. So that is going to happen after 150 seconds. The volume of the
brine in the tank after t seconds is V (t) = 100 + 2t. Let us do an analysis similar
to that in the book at page 51. Denote the amount of salt in the tank at time t by
y(t). We balance the change in salt y(t + h) − y(t) during a small interval of time
h in the following way: the difference comes from the amount of salt that is getting
in the tank minus the amount that is getting out. The amount that is getting in is
5h lb/s, if we measure h in seconds. Then the amount that is getting out assuming

perfect mixture (instantaneous) is approximately y(t)
V (t)

3h lb of salt. So, the balance

is y(t+h)−y(t)
h

≈ 5 − 3y(t)
100+2t

, t ∈ [0, 150]. Letting h go to zero, we obtain the initial
value problem

(1.28)

{
dy
dt

= 5− 3y(t)
100+2t

y(0) = 50.

This is a linear equation with initial condition that we solve using the same method
as above. We have R(t) =

∫ t

0
3

100+2s
ds = 3

2
ln(50+t

50
). This means that we need to
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multiply by (50+t
50

)
3
2 both sides of dy

dt
+ 3y(t)

100+2t
= 5. We get

(
50 + t

50

) 3
2 dy

dt
+

3

100

(
50 + t

50

) 1
2

y(t) = 5

(
50 + t

50

) 3
2

Integrating this last equation with respect to t from 0 to s, we obtain:

(
50 + s

50

) 3
2

y(s)− 50 =
2

50
√
50

((50 + s)
5
2 − 502

√
50).

Substituting s = 150 in this last equality, we obtain y(150) = 800000
√
2−12500

√
2

2000
√
2

≈
393.75 lb.

Homework:

Section 1.4 pages 41–44: 1-28, 32, 43, 48, 61, 62 and 64;

Section 1.5 pages 54-56: 11-15, 26-33.
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1.4 Lecture IV

Quotation: “The highest form of pure thought is in mathematics”,
Plato

Other type of equations which can be solved with exact meth-
ods, notions, real world applications: homogeneous (in terms of
variables) differential equations, Bernoulli differential equations, exact
differential equations, characterization of exactness, reducible to second-
order DE (dependent variable missing, independent variable missing).

1.4.1 Substitution methods

We begin with an example by solving the Problem 55, page 72.

Problem 1.4.1. Show that the substitution v = ax+by+c transforms the differential
equation dy

dx
= F (ax+ by + c) into a separable equation.

Solution: Let us assume that b ̸= 0. Differentiating the substitution v = ax+by+c
with respect to x, we get dv

dx
= a+b dy

dx
and then the equation becomes dv

dx
= a+bF (v)

which is a separable equation indeed. If b = 0 then the equation dy
dx

= F (ax + c) is
already separable.

As an application lets work problem 18 on page 71: find a general solution
of (x + y)y′ = 1. We make the substitution v = x + y. Then dv

dx
= 1 + dy

dx
which

turns the original equation into v(v′ − 1) = 1 or vv′ = v + 1. Observe that one
singular solution of this equation is v(x) = −1 for all x ∈ R which corresponds to
y(x) = −x− 1 for all x ∈ R.

If v(x) ̸= −1 for x in some interval we can write the equation as vv′

v+1
= 1. Equiva-

lently, in order to integrate let us write this equation as

v′ − v′

v + 1
= 1.

Integrating with respect to x we obtain v − ln |v + 1| = x+ C. Getting back to the
original variable this can be written as x + y − ln |x + y + 1| = x + C. Notice that
this could be simplified to y = ln |x+ y+1|+C which gives y only implicitly. If we
want to get rid of the logarithmic function and also of the absolute value function
as well, we can exponentiate the last equality to turn it into ey = k(x+y+1) where
k is a real constant which is not zero. In order to include the singular solution we
can move the constant to the other side and allow it to be zero: x + y + 1 = k1e

y,
k1 ∈ R. Some solutions curves can be drawn with Maple and we include some here
(k = 1, 2 and 1/10).



1.5. HOMOGENEOUS DE 33

k(x+ y + 1) = ey, k = 1, 2, 1
10

1.5 Homogeneous DE

The homogeneous property referes here to the function f when writing the DE as
y′ = f(x, y). The prototype is actually

y′ = f(y/x).

The recommended substitution here is v = y/x. This implies y(x) = xv(x) so,
differentiating with respect to x we obtain y′ = v + xv′. Then the original equation
becomes v′ = (f(v)− v)/x which is a separable DE.

In order to check that a differential equation is homogeneous we could sub-
stitute y = vx in the expression of f(x, y) and see if the resulting function can be
written just in terms of v. As an example let’s take Exercise 14, page 71.

Problem 1.5.1. Find all solutions of the equation yy′ + x =
√

x2 + y2.

Solution: One can check that this DE is homogeneous. Let y = xv, where v
is a function of x. Then y′ = v+xv′ and so our equation becomes xv(v+xv′)+x =√
x2 + x2v2. Assume first that we are working on an interval I ⊂ (0,∞). Then the

DE simplifies to xvv′ =
√
1 + v2 − 1− v2. Let us observe that v(x) = 0 for all x ∈ I

is a solution of this equation. We will see that this is not a singular solution. So, if
we assume v is not zero on I, say v > 0, the DE is equivalent to vv′

1+v2−
√
1+v2

= − 1
x

or vv′√
1+v2(

√
1+v2−1)

= − 1
x
.

Using the conjugate we can modify the left hand side to v(
√
1+v2+1)v′

v2
√
1+v2

= − 1
x
or

(1.29)
v′

v
+

v′

v
√
1 + v2

= −1

x
.
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If we integrate both sides with respect to x we obtain ln(v) +
∫

dv
v
√
1+v2

= − lnx +

C. In the indefinite integral we’ve got, let us do the change of variables: v = 1
u
.

This integral becomes
∫

dv
v
√
1+v2

= −
∫

du√
1+u2 = − ln |u +

√
1 + u2| + C ′ = ln |v| −

ln(
√
1 + v2 + 1) + C ′. Hence the DE (1.29) leads to

(1.30)
xv2√

1 + v2 + 1
= k

where the constant k can take any non-negative value. Using the conjugate again
(2) changes into x(

√
1 + v2 − 1) = k or

√
x2 + y2 − x = k. If we solve this for y we

obtain

(1.31) y(x) =
√

(2x+ k)k

Let us observe that this function is actually defined on (−k/2,∞) if k ≥ 0. One can
go back and check that v < 0 leads to the choice of

(1.32) y(x) = −
√

(2x+ k)k, x ∈ (−k/2,∞).

The two general solutions (1.31) and (1.32) are all the solutions of the original
equation (the singular solution y(x) = 0 is included in (1.31) for k = 0.

1.6 Bernoulli DE

The general form of these equations is very close to that of linear DE:

(1.33) y′ + P (x)y = Q(x)yn.

So, we may assume that n is different of 0 or 1 since these cases lead to DE that
we have already studied. The recommended substitution is v = y1−n. This implies

y = v
1

1−n and y′ = 1
1−n

vn/(1−n)v′. This changes the original equation to

1

1− n
v

n
1−nv′ + P (x)v

1
1−n = Q(x)v

n
1−n ,

which after dividing by v
n

1−n (assuming is not zero)

1

1− n
v′ + P (x)v = Q(x),
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which is a linear DE.

Let us see how this method works with the exercise 26, page 71.

Problem 1.6.1. Find all solutions of the equation 3y2y′ + y3 = e−x.

Solution: If we put the given equation in the form (1.33) we get y′ + 1
3
y = e−x

3
y−2.

This says that n = −2 and so we substitute v = y3. This could have been observed
from the start. The equation becomes v′ + v = e−x or (exv(x))′ = 1. Hence
exv(x) = x + C and then v(x) = (C + x)e−x. This gives the general solution
y(x) = (C + x)1/3e−x/3 for all x ∈ R.

1.6.1 Exact equations

We say the equation

(1.34) y′ = f(x, y)

is an exact equation if f(x, y) = −M(x, y)

N(x, y)
and for some function F (x, y) we have

M(x, y) =
∂F

∂x
(x, y) and N(x, y) =

∂F

∂y
(x, y). Let us observe that if an equation is

exact then F (x, y(x)) = C is a general solution giving y implicitly: indeed, differen-
tiating this with respect to x we get ∂F

∂x
(x, y) + ∂F

∂y
(x, y)y′(x) = 0. This is nothing

but the original equation. There is a condition on M and N that tells us if the
equation is exact or not.

Theorem 1.6.2. Let M and N as before, defined and continuously differentiable on
a rectangle R = {(x, y) : a < x < b, c < y < d}. Then the equation (1.34) is exact
if and only if ∂M

∂y
(x, y) = ∂N

∂x
(x, y) for each (x, y) ∈ R.

PROOF: First suppose that the equation (1.34) is exact. Then there exists F

differentiable such that M(x, y) =
∂F

∂x
(x, y) and N(x, y) =

∂F

∂y
(x, y) with f(x, y) =

−M(x, y)

N(x, y)
. Then

∂M

∂y
(x, y) =

∂2F

∂y∂x
(x, y) and

∂N

∂x
(x, y) =

∂2F

∂x∂y
(x, y). For a

function which twice continuously differentiable the mixed derivatives are equal:
∂2F

∂y∂x
(x, y) =

∂2F

∂x∂y
(x, y). This is called Schwartz (or Clairaut)’s theorem.
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For the other implication, we define F (x, y) =
∫ y

y0
N(x0, s)ds +

∫ x

x0
M(s, y)ds. We

need to check that M(x, y) =
∂F

∂x
(x, y) and N(x, y) =

∂F

∂y
(x, y). The first equal-

ity is a consequence of the Second Fundamental Theorem of Calculus since the
first part in the definition of F is constant with respect to x and the second gives
∂F

∂x
=

d

dx
[

∫ x

x0

M(s, y)ds] = M(x, y). To check the second equality we differentiate

with respect to y the definition of F :
∂F

∂y
=

d

dy
[

∫ y

y0

M(y0, s)ds] +

∫ x

x0

∂M

∂y
(s, y)ds.

(We have used differentiation under the sign of integration which is true under

our assumptions.) Using the hypothesis that ∂M
∂y

(x, y) = ∂N
∂x

(x, y) we get
∂F

∂y
=

N(y0, y) +

∫ x

x0

∂N

∂x
(s, y)ds = N(y0, y) +N(x, y)−N(x0, y) = N(x, y).

Example: Let us look at the problem 36, page 72. In this case M(x, y) =
(1 + yexy) and N(x, y) = 2y + xexy. We need to check if the equation M(x, y) +
N(x, y)y′ = 0 is exact. Using the Theorem 1.6.2 we see that we have to check that
∂M
∂y

(x, y) = ∂N
∂x

(x, y). So, ∂M
∂y

(x, y) = (1 + xy)exy and ∂N
∂x

(x, y) = (1 + xy)exy. In
order to solve it we use the same method as in the proof of Theorem 3.1. First we
integrate M(x, y) with respect to x and obtain F (x, y) = x + exy + h(y). Then we
differentiate this with respect to y and obtain N(x, y) = 2y + xexy = xexy + h′(y).
Hence h(y) = 2y which implies h(y) = y2 + C. Then the general solution of this
given equation is x+ y2 + exy + C = 0.

1.6.2 Reducible second order DE

The DE we are dealing with in these cases is of the form

(1.35) F (x, y, y′, y′′) = 0.

In some situations just by making a substitution we can reduce this equation to a
first order one. Case I. (Dependent variable y missing) In this case we substitute
v = y′ Then the equation becomes a first-order equation.

Case II. (Independent variable missing ) If the equation is written as F (y, y′, y′′) =
0 then the substitution v = y′ will give y′′ = dv

dy
dy
dx

= v dv
dy

and the equation becomes

F (y, v, v dv
dy
) = 0 which is first-order DE.

Let us see an example like this. Problem 54, page 72 asks to solve the DE
yy′′ = 3(y′)2. If we substitute v = y′, y′′ = v dv

dy
we get yv dv

dy
= 3v2. One particular

solution of this equation is v(x) = 0 for all x. Assuming that v(x) ̸= 0 for x in some
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interval I we get v′

v
= 3

y
. Integrating with respect to y we obtain ln |v| = ln |y|3+C.

From here v(y) = ky3 with k and arbitrary real constant. Since y′ = ky3 we can
integrate again since this is a separable equation to obtain − 1

2y2
= kx+m where m

is another constant. This gives the general solution y(x) = C1√
1+C2x

with C1, C2 ∈ R.

Homework:

Section 1.6 pages 71–73: 1-23, 34-36, 43-55, 63 and 66;
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Chapter 2

Analytical Methods, Second and
n-order Linear Differential
Equations

2.1 Lecture V

Quotation: “I could never resist a definite integral.” G.H. Hardy

2.1.1 Stability, Euler’s Method, Numerical Meth-
ods, Applications

Equilibrium solutions and stability for first-order autonomous DE, crit-
ical points, stable and instable critical points, bifurcation point, bifur-
cation diagram, vertical motion of a body with resistance proportional
to velocity, Euler’s approximation method, the error theorem in Euler’s
method

Another way of studying differential equations is to use qualitative methods in
which one can say various things about a particular solution of the DE in question
without necessarily solving for the solution in closed form or even in implicit form.
Even for very simple differential equations which are autonomous first-order:

(2.1) y′ = f(y)

39
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for some continuous function f , which leads to a separable DE, the integration
∫

dy
f(y)

may turn out to be very difficult. Not only that but these integrals may be impossible
to be expressed in terms of elementary functions that we have reviewed earlier (poly-
nomials, power functions, exponential and logarithmic ones, trigonometric functions
and inverses of them).

One important concept for such an analysis in the case of DE of type (2.1) is
the following notion:

Definition 2.1.1. A number c for which f(c) = 0 is called a critical point of the
DE (2.1).

If c is a critical point for (2.1), we have a particular solution of (2.1): y(x) = c
for all x ∈ I. Such a solution is called an equilibrium solution of (2.1). For
the following concept let us assume that f is also continuously differentiable on its
domain of definition so that the existence and uniqueness theorem of Cauchy applies.

Definition 2.1.2. A critical point c of (2.1) is said to be stable if for every ϵ > 0
there exist a positive number δ such that if |y0 − c| ≤ δ then the solution of y(x) of
the initial value problem associated to (2.1)

(2.2)

{
y′ = f(y)

y(0) = y0

satisfies |y(x)− c| ≤ ϵ for all x ≥ 0 and in the domain of the solution.

Notice that this is a very technical mathematical definition which is saying
that if the initial point where a solution starts is close enough of the critical point
c then the whole solution is going to stay close to the corresponding equilibrium
solution at any other point in time (black whole behavior). If this definition is not
satisfied we say that c is unstable.

Let us work the Problem 22, page 97 as we introduce all these related concepts
and techniques.

Problem 2.1.3. Consider the DE y′ = y + ky3 where k is a parameter. Determine
the critical points and classify them as stable or unstable.

Solution: The equation y + ky3 = 0 has in general three solutions y1 = 0, y2,3 =

±
√

−1/k. There is only one solution if k = 0, only one real solution if k > 0 and
three real ones if k < 0.

If k = 0 there is only one solution y = 0 and if y0 is given the initial value problem
(2.2) has unique solution y(x) = y0e

x, x ∈ R, which has the property lim
x→∞

|y(x)| =
∞, if y0 ̸= 0, which shows that y = 0 is unstable.



2.1. LECTURE V 41

If k > 0 then y′(x) ≥ y(x) if y(x) > 0 at least. Then a similar method to that
of solving linear equations shows that y′(x) ≥ y0e

x and this implies the y = 0 is
unstable too. In fact one can integrate (2) and check that this is true. The general
solution of

(2.3)

{
y′ = y + ky3

y(0) = y0

is given by y(x) = y0ex√
1−ky20(e

2x−1)
(please check!). This solution is defined only for x

satisfying (e2x − 1)ky20 < 1. So if y0 ̸= 0 then x ∈ (−∞, T ) where T = 1
2
ln(1 + 1

ky20
).

Let us observe that lim
x→T

|y(x)| = ∞ so the point 0 is indeed unstable.

If k < 0 then the solution is well defined for all values of x ∈ [0,∞). We can write
the expression of y(x) in the form

y(x) =
y0√

e−2x(1 + ky20)− ky20

which at the limit, as x → ∞, is ±
√

1
−k

depending upon y0 is positive or negative.

This shows that y = 0 is still unstable. On the other hand, one can check that, for

instance, |y(t)−
√

1
−k

| ≤ ϵ if |y0−
√

1
−k

| ≤ δ where δ is chosen to be smaller than 1
2a

and aϵ
14

(a =
√
−k). Similarly for the solution −

√
1
−k

which shows that both these

critical points are stable. One could come to the same conclusion without solving
the system (2.3). For k < 0 the graph of f(y) = y + ky3 as a function of y looks
like:

f(y) = y + ky3, k < 0

From this graph one can see that if the solution starts close to y2 =
√

1
−k

but

below y2 then the solution is going to have positive derivative. As a result it is going
to increase as long as it is less than y2. In fact, y(x), is not going to reach the value
y2 because that is going to contradict the uniqueness theorem. Hence y(x) is going
to have a limit, say L. One can show that in this case the solution is defined for
all x ∈ [0,∞), So, we can let x go to infinity in the original DE and obtain that
lim
x→∞

y′ = L+ kL3. One can show that lim
x→∞

y′ = 0. This implies that L = y2.



42CHAPTER 2. ANALYTICALMETHODS, SECONDANDN-ORDER LINEARDIFFERENTIAL EQUATIONS

Remark: The point k = 0 is called a bifurcation point. By definition, a
value of a parameter k is a bifurcation point if the behavior of the critical points
(solutions of f(y, k) = 0) changes as k increases. The graph of the points (k, c) with
f(c, k) = 0 is called bifurcation diagram.

In some other texts, the a critical point which is stable is also called a sink. If
the derivative of f exists at such a point then one checks if f ′(c) < 0 and concludes
that the critical point is a sink or stable. If f ′(c) > 0 then one sees that such a
point is not stable or sometime called source. If f ′(c) = 0 or f ′(c) doesn’t exist,
the critical point is said to be a node.

Some useful ingredients here are:

Problem 2.1.4. Let g be differentiable on [0,∞) such that lim
x→∞

g(x) and lim
x→∞

g′(x)

exist. Show that lim
x→∞

g′(x) = 0.

Problem 2.1.5. Suppose that f is some differentiable function on (a, b) with c ∈
(a, b) a critical point (f(c) = 0) such that f(y) > 0 if y < c and f(y) < 0 for y > c.
Show that the initial value problem

(2.4)

{
y′ = f(y)

y(0) = y0 ∈ (a, b)

has a unique solution y(x) defined for all x ≥ 0 and lim
x→∞

y(x) = c.

Problem 2.1.6. Let k > 0 and f be a differentiable function defined on [0,∞) such
that lim

x→∞
[f ′(x) + kf(x)] = L. Show that lim

x→∞
f ′(x) = 0.

Notice that Problem 0.6 generalizes Problem 0.4.

2.1.2 Vertical motion under gravitational force and air re-
sistance proportional to the velocity

A simple application of this analysis can be done for the case of movement of a body
with mass m near the surface of the earth subject to gravitation and friction to the
air. If one assumes that the friction force is F = kv and opposed to the direction of
the movement all the time we get the DE:

m
dv

dt
= −kv +mg

or
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(2.5)
dv

dt
= −ρv + g.

One can easily see that vl =
ρ
g
= mg

k
is a stable solution of this differential equation.

This speed is called the terminal speed. Please read the analysis done in the book
for the case the friction is proportional to the square of the velocity. In this case

the terminal speed is
√

ρ
g
.

2.1.3 Euler’s method of approximating the solution of a
first-order DE

Algorithm: Given the initial value problem

(2.6)

{
y′ = f(x, y)

y(x0) = y0

Euler’s method with step size h consists in using the recurrent formula yk+1 = yk +
hf(x0+ kh, yk) for k = 0, 1, 2, ..., n in order to compute the approximation yn of the
solution of (2.6) at x = xn. The difference |y(xn) − yn| is called the cumulative
error.

The figure below has been obtained with Maple using Euler’s method with
step size h = 0.001, n = 6000, for the initial value problem

(2.7)

{
y′ = x2 − y2

y(−3) = 1.

Euler’s Method, h=0.001,n=6000
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The exact solution of this DE is difficult to calculate but there is an expression
of it in terms of Bessel functions. Maple 9 doesn’t handle it properly so we cannot
compute the cumulative error. There is a theorem that gives some information
about the cumulative error.

Theorem 2.1.7. Assume that the function f in (2.6) is continuous and differen-
tiable on some rectangle R = [a, b] × [c, d]. Then there exist a constant C > 0
(independent of h and as a result, independent of n) such that |y(xn)− yn| < Ch as
long as xn ∈ (a, b), where yn is computed with the Euler’s method with step size h.

This constant C depends only on the function f and on the rectangle R.
Theoretically this implies that by taking h small enough we can get any accuracy
we want for the solution.

One can obtain better approximations if one uses the improved Euler’s approx-
imation method or Runge-Kutta method (please see the book).

Homework: For the first test work problems at the first chapter review on page
76.

Section 2.2 pages 96–97: 1-12, 21, 22;

2.2 Lecture VI

Quotation: “If there is a problem you can’t solve, then there is an easier
problem you can solve: find it.” George Pólya

Second-order linear DE, principle of superposition for linear homoge-
neous equations, existence and uniqueness for linear DE, initial value
problem for second-order DE, linear independence of two functions, Wron-
skian, general solution of linear second-order homogeneous DE, constant
coefficients, characteristic equation, the case of real roots, the case of
repeated roots and the case of pure complex roots.

The type of equations we are going to be concerned with are DE that could
be reduced to

(2.8) y′′ + p(x)y′ + q(x)y = f(x),

for some continuous functions p, q, f on an open interval I. Recall that if f = 0 then
we called the DE homogeneous.
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An important property for homogenous linear equations is the following:

Theorem 2.2.1. (Superposition principle) If y1 and y2 are two solutions of
y′′ + p(x)y′ + q(x)y = 0, then z(x) = c1y1(x) + c2y2(x) is also a solution for every
constants c1 and c2.

PROOF. Because y′′1 +p(x)y′1+ q(x)y1 = 0 and y′′2 +p(x)y′2+ q(x)y2 = 0, we can
multiply the first equation by c1 and the second by c2 and then add the two new
equations together. Then we obtain z′′ + p(x)z′ + q(x)z = 0.

The existence and uniqueness theorem takes a special form in this case.

Theorem 2.2.2. (Existence and Uniqueness) For the initial value problem

(2.9)


y′′ + p(x)y + q(x)y = f(x)

y(a) = b1,

y′(a) = b2

assume that p, q and f are continuous on an interval I containing a. Then (2.9)
has a unique solution on I.

The problem (2.9) is called an initial value problem associated to a second-
order DE.

Example: Suppose we take the differential equation in Problem 16, page 156: y′′ +
1
x
y′ + 1

x2y = 0 and the initial condition y(1) = 3 and y′(1) = 2. Then by applying
Theorem 0.2 we know that this initial value problem should have a solution defined
on (0,∞). If we take the the two solutions given in the problem y1 = cos(lnx)
and y2 = sin(lnx) we can use the Superposition Principle to find our solution by
determining the constants c1 and c2 from the system:

(2.10)

{
c1y(1) + c2y2(1) = 3

c1y
′
1(1) + c2y

′
2(1) = 2

or c1 = 3, c2 = 2. This gives y(x) = 3 cos(lnx) + 2 sin(lnx) which exists on (0,∞),
the largest interval on which p(x) = 1

x
and q(x) = 1

x2 are defined and continuous.

Definition 2.2.3. Two functions f, g defined on an interval I are said to be linearly
independent on I, if c1f(x) + c2g(x) = 0 for all x ∈ I implies c1 = c2 = 0.

If two functions are not linearly independent on I, they are called linearly
dependent on I.
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Example I: Suppose f(x) = cos 2x and g(x) = cos2 x − 1
2
and I = R. These two

functions are linearly dependent on R since f(x) + (−2)g(x) = 0 for all x ∈ R.

Example II: Let us take f(x) = x and g(x) = |x| and x ∈ I = R. These two
are linearly independent since C1f(x) + C2g(x) = 0 for all x ∈ R. This implies
C1 + C2 = 0 if x = 1 for instance x = 1 and −C1 + C2 = 0 if x = −1. This attracts
C1 = C2 = 0 which means that f and g are linearly independent.

Definition 2.2.4. For two differentiable functions f and g on I, the Wronskian
of f and g is the determinant

W (f, g)(x) =

∣∣∣∣ f(x) g(x)
f ′(x) g′(x)

∣∣∣∣ = f(x)g′(x)− f ′(x)g(x), x ∈ I.

The next theorem characterizes solutions of second-order DE which are linearly
independent.

Theorem 2.2.5. Let y1 and y2 be two solutions of y′′ + p(x)y′ + q(x)y = 0 defined
on open interval I, where p and q are continuous. Then y1 and y2 are linearly
independent if and only if W (y1, y2)(x) ̸= 0 for all x ∈ I.

PROOF. (⇐=) Let us assume that W (y1, y2)(x) ̸= 0 for all x ∈ I. By way
of contradiction if the solutions y1 and y2, are linearly dependent then y1 = cy2
for some constant c. Then W (y1, y2) = y1y

′
2 − y′1y2 = cy2y

′
2 − (cy2)

′y2 = 0. So, if
W (y1, y2)(x) ̸= 0 for all x ∈ I. This contradiction shows that the two solutions must
be linearly independent.

(=⇒) Assume that y1 and y2 are linearly independent. This means that c1y1+
c2y2 = 0 on I implies c1 = c2 = 0. We will follow the idea from the Problem 32,
page 156. Since y′′1 + p(x)y′1 + q(x)y1 = 0 and y′′2 + p(x)y′2 + q(x)y2 = 0 we can
multiply the first equation by y2 and the second by y1 and subtract them. We get
y′′1y2−y1y

′′
2 +p(x)(y1y

′
2−y2y

′
1) = 0. In a different notation W ′(x) = p(x)W (x). This

equation in W is linear with the solution W (x) = W0e
∫
p(x)dx. This implies that

W (x) ̸= 0 if W0 ̸= 0. So, we are done if W0 ̸= 0. Again by way of contradiction let
us assume that W0 = 0. Then W (x) = 0 for all x ∈ I. Hence (y1/y2)

′ = 0 which
means y1/y2 = c or y1(x)− cy2(x) = 0 for some nonzero constant c and for all x ∈ I
where y2(x) ̸= 0. If y2(t) = 0, for some t, then as a corollary of Theorem 2.9 we
cannot have y′2(t) = 0 because that will attract y2 ≡ 0. Therefore W (t) = 0 implies
y1(t) = 0 which means y1(x) − cy2(x) = 0 for al x ∈ I and this contradicts the
assumption on y1 and y2 as being linear independent. It remains that W (x) ̸= 0 for
all x ∈ I.

The next theorem tells us how the general solution of a homogeneous second-
order linear differential equation looks like.
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Theorem 2.2.6. If y1 and y2 are two linearly independent solutions of y′′+p(x)y′+
q(x)y = 0 defined on open interval I, where p and q are continuous then any solution
y can be written as y = c1y2 + c2y2.

PROOF. Let us start with an arbitrary solution y. Consider an arbitrary point
x0 ∈ I. From the previous theorem we see that W (x0) ̸= 0. Hence by Crammer’s
rule the system {

c1y1(x0) + c2y2(x0) = y(x0)

c1y
′
1(x0) + c2y

′
2(x0) = y′(x0)

has a unique solution in c1 and c2. Hence y and z = c1y2 + c2y2 both satisfy the
initial value problem

(2.11)


w′′ + p(x)w + q(x)w = 0

w(x0) = y0,

w′(x0) = y′(x0).

Using the uniqueness property of the solution (Theorem 2.9) we see that the two
solutions must coincide: y = c1y1 + c2y2.

Two linearly independent solutions of a second-order linear homogeneous DE
are called a fundamental set of solutions for this DE.

2.2.1 Linear second-order DE with constant coefficients

If the DE is of the form ay′′ + by′ + cy = 0 we can find two solutions which are
linearly independent by going first to the characteristic equation:

(2.12) ar2 + br + c = 0

Theorem 2.2.7. (a) If the roots of the equation (2.12) are real, say r1 and r2, and
distinct then two linearly independent solutions of ay′′ + by′ + cy = 0 are er1x and

er2x. The general solution of the DE is then given by y(x) = c1e
r1x + c2e

r2x .

(b) If the roots are real but r1 = r2 = r then two linearly independent solutions of
ay′′ + by′ + cy = 0 are erx and xerx. The general solution of the DE is then given by

y(x) = (c1 + c2x)e
r1x .

(c) If the two roots are pure imaginary ones, say r1,2 = α + iβ then two linearly
independent solutions of ay′′+by′+cy = 0 are eαx sin βx and eαx cos βx. The general

solution of the DE is then given by y(x) = (c1 sin βx+ c2 cos βx)e
αx .
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PROOF. We need to check in each case that the given pair of functions form a
fundamental set of solutions.

Case (a) The functions y1(x) = er1x and y2(x) = er2x, x ∈ R, satisfy the DE,
ay′′ + by′ + cy = 0, because r1 and r2 satisfy the characteristic equation (2.12). The
Wronskian of these two functions is W (y1, y2)(x) = (r2 − r1)e

(r1+r2)x ̸= 0 since we
assume in this case r1 ̸= r2.

Case (b) The two functions this time are y1(x) = er1x and y2(x) = xer1x. The
only novelty here is why y2 must be a solution: y′2(x) = (r1x + 1)er1x, y′′2(x) =
(r21x + 2r1)e

r1x and ay′′2 + by′2 + c = [(ar21 + br1 + c)x+ 2ar1 + b)] er1x ≡ 0 since
r1 = r2 =

−b
2a
. We have W (y1, y2)(x) = er1x ̸= 0 for all x ∈ R.

Case (c) Here y1(x) = eαx sin βx and y2(x) = eαx cos βx. If we calculate y′1(x) =
(α sin βx + β cos βx)eαx and y′′1(x) = [(α2 − β2) sin βx+ 2αβ cos βx] eαx, and ay′′1 +
by1 + cy1 = [(a(α2 − β2) + bα + c) sin βx+ (2aαβ + bβ) cos βx] eαx. But we know

from the quadratic formula that α = −b
2a

and β =
√
4ac−b2

2a
. Hence a(α2−β2)+bα+c =

0 and 2aα+ b = 0 which in turn implies ay′′1 + by1 + c ≡ 0. Similarly one can check
that ay′′2 +by2+cy2 ≡ 0. The Wronskian is W (y1, y2)(x) = −2βeαx ̸= 0 for all x ∈ R
(in this case β ̸= 0).

Examples: Problem 34, page 156. The DE is y”+2y′−15y = 0 whose characteristic
equation is r2+2r− 15 = 0. This has two real solutions r1 = −5 and r2 = 3. Hence
the general solution of this equation is y(x) = c1e

3x + c2e
−5x, x ∈ R.

In Problem 40, page 156 the DE is 9y′′ − 12y′ + 4y = 0. The characteristic
equation is 9r2 − 12r + 4 = 0 whose solutions are r1 = r2 = 2

3
. Hence the general

solution of this DE is y(x) = (c1x+ c2)e
2x/3, x ∈ R.

If the DE is y′′+4y′+13y = 0 then the characteristic equation r2+4r+13 = 0
has pure complex roots r1,2 = −2 ± 3i. Therefore the general solution of the given
differential equation is

y(x) = (c1 sin 3x+ c2 cos 3x)e
−2x.

Homework:

Section 3.1 pages 156–157: 13-16, 24-26, 31-42, 51;

2.3 Lecture VII

Quotation: “If a nonnegative quantity was so small that it is smaller
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than any given one, then it certainly could not be anything but zero. To
those who ask what the infinitely small quantity in mathematics is, we
answer that it is actually zero. Hence there are not so many mysteries
hidden in this concept as they are usually believed to be. These supposed
mysteries have rendered the calculus of the infinitely small quite suspect
to many people. Those doubts that remain we shall thoroughly remove
in the following pages, where we shall explain this calculus. ” Leonhard
Euler

Superposition Principle for n-order linear homogeneous DE; Existence
and uniqueness for n-order linear DE; Linearly independent and linearly
dependent set of functions; Wronskian of a set of n, (n − 1)-times dif-
ferentiable functions; Characterization theorem of independent solutions;
General solutions of an n-order homogeneous linear DE; Complementary
solution yc and particular solution yp of an n-order linear DE, Funda-
mental set of solutions of an n-order homogeneous linear DE; General
solutions of an n-order linear DE, n-order linear homogeneous DE with
constant coefficients

This lecture is basically a generalization of the previous one. Let us fix n a
natural number greater or equal to 2. We are assuming that the n-order linear DE
has been reduced to the form:

(2.13) y(n) + p1(x)y
(n−1) + ...+ pn(x)y = f(x),

where p1, p2, ..., pn, f are continuous on an open interval I. The homogeneous DE
associated to (4.5) is

(2.14) y(n) + p1(x)y
(n−1) + ...+ pn(x)y = 0.

As before an important property for the homogeneous case is the principle of super-
position:

Theorem 2.3.1. (Superposition Principle) If yk, k = 1...n are solutions of then

(2.14) then the function z(x) =
n∑

k=1

ckyk(x), x ∈ I is also a solution of (2.14) for

every value of the constants ck, k = 1...n.

The proof of this is following exactly the same steps as in the case n = 2.

The existence and uniqueness theorem needs to formulated in the following way.
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Theorem 2.3.2. (Existence and Uniqueness) For the initial value problem

(2.15)

{
y(n) + p1(x)y

(n−1) + ...+ pn(x)y = f(x)

y(a) = b1, y
′(a) = b2, ..., y

(n−1)(a) = bn,

assume that p1, p2, ..., pn, f are continuous on an interval I containing a. Then
(2.15) has a unique solution on I.

The problem (2.15) is called the initial value problem associated to (4.5).

Example: Suppose we take the differential equation in Problem 20, page 168:
x3y′′′ + 6x2y′′ + 4xy′ − 4y = 0 and the initial condition y(1) = 1, y′(1) = 5,
y′′(1) = −11. We can rewrite the equation as y′′′ + 6

x
y′′ + 4

x2y
′ − 4

x3y = 0.

Then by applying Theorem 2.3.2 we know that this initial value problem should
have a solution defined on (0,∞). If we take the three solutions given in the prob-
lem’s statement: y1 = x, y2 = 1

x2 and y3 = lnx
x2 . We can use the Superposition

Principle to find our solution by determining the constants c1, c2 and c3 from the
system:


c1y(1) + c2y2(1) + c3y3(1) = 1

c1y
′
1(1) + c2y

′
2(1) + c3y

′
3(1) = 5

c1y
′′
1(1) + c2y

′′
2(1) + c3y

′′
3(1) = −11

or 
c1 + c2 = 1

c1 − 2c2 + c3 = 5

6c2 − 5c3 = −11.

Solving this system of 3 × 3 linear equations we get c1 = 2, c2 = −1 and c3 = 1.
This gives the unique solution of our initial value problem y(x) = 2x − 1

x2 + lnx
x2

which exists on I = (0,∞), the largest interval on which p1, p2, p3 are defined and
continuous and of course containing the initial value for x (1 ∈ I).

Definition 2.3.3. A set of functions fk, k = 1...n, defined on an interval I, is said

to be linearly independent on I, if
n∑

k=1

ckfk(x) = 0 for all x ∈ I implies c1 = c2 =

... = cn = 0.

If a set of functions is not linearly independent on I, the set is called linearly
dependent on I. By negation of the above definition we see that a set of n functions
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is linearly dependent on I if there exist ck not all zero such that
n∑

k=1

ckfk(x) = 0 for

all x ∈ I.

Example: Suppose f1(x) = sinx, f2(x) = sin 3x, ..., fn(x) = sin(2n − 1)x

and fn+1(x) =
(sinnx)2

sinx
. These (n+1) functions are linearly dependent on (0, π/2)

since f1 + f2 + f3 + ...+ fn − fn+1 ≡ 0 (please check!).

Definition 2.3.4. For n functions, f1, ...,fn, which are (n− 1)-times differentiable
on I, the Wronskian of f1, ..., fn is the function calculated by the following deter-
minant

W (f1, ..., fn)(x) =

∣∣∣∣∣∣∣∣
f1(x) f2(x) ... fn(x)
f ′
1(x) f ′

2(x) ... f ′
n(x)

... ... ... ...

f
(n−1)
1 (x) f

(n−1)
2 (x) ... f

(n−1)
n (x)

∣∣∣∣∣∣∣∣ , x ∈ I.

The next theorem characterizes a set of n solutions of an n-order homogeneous
linear DE to form a linearly independent set of functions.

Theorem 2.3.5. Let y1, y2,..., yn be n-solutions of (2.14). Then y1, y2,..., yn forms
a set of linearly independent functions if and only if

W (y1, y2, ..., yn)(x) ̸= 0

for all x ∈ I.

PROOF. (⇐=) For sufficiency let us proceed as before (in the case n = 2) using
an argument by contradiction. If the solutions y1, y2,..., yn are linearly dependent
then

∑n
k=1 ckyk ≡ 0 for some constants ck not all zero. Then W (y1, y2, ..., yn) ≡ 0

because the determinant has one column is a linear combination of the others. So,
if W (y1, y2, ..., yn)(x) ̸= 0 for all x ∈ I then the set of solutions must be linearly
independent.

(=⇒) For necessity, let us assume the solutions y1,y2,...,yn are linearly independent
and again by way of contradiction suppose that their Wronskian is zero for some
point a ∈ I. This means that the following homogeneous linear system of equations
in c1, c2, ..., cn

(2.16)


c1y1(a) + c2y2(a) + ...+ cnyn(a) = 0

c1y
′
1(x) + c2y

′
2(x) + ...+ cny

′
n(x) = 0

...

c1y
(n−1)
1 (a) + c2y

(n−1)
2 (a) + ...+ cny

(n−1)
n (a) = 0,
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has a non-trivial solution. We take such a non-trivial solution, c1, c2, ..., cn, and
consider the function

z(x) =
n∑

k=1

ckyk(x)

which by the Superposition Principle is a solution of (2.14). Since (2.16) can be
written as z(a) = z′(a) = ... = z(n−1)(a) = 0 we can apply the uniqueness of
solution (Theorem 2.3.2 ) and conclude that z ≡ 0. But that contradicts the fact
that y1,y2,...,yn are linearly independent.

Example: The equation y(n) = 0 has n linearly independent solutions: y1 = 1,
y2(x) = x, y3(x) = x2, ..., yn = xn−1 on any given interval I since the Wronskian of
these functions is equal to 1!2!...(n− 1)! for all x ∈ I (please check !).

The next theorem tells us how the general solution of a homogeneous n-order
linear differential equation looks like.

Theorem 2.3.6. If y1, y2, ..., yn are n linearly independent solutions of (2.14) defined
on the open interval I, then any solution z of (2.14) can be written as z(x) =
n∑

k=1

ckyk(x), x ∈ I, for some constants ck, k = 1...n.

PROOF. The proof is the same as in the case n = 2. Let us start with an
arbitrary solution z. Consider an arbitrary point a ∈ I. From the previous theorem
we see that W (y1, ..., yn)(a) ̸= 0. Hence by Crammer’s rule the system

(2.17)


c1y1(a) + c2y2(a) + ...+ cnyn(a) = z(a)

c1y
′
1(x) + c2y

′
2(x) + ...+ cny

′
n(x) = z′(a)

...

c1y
(n−1)
1 (a) + c2y

(n−1)
2 (a) + ...+ cny

(n−1)
n (a) = z(n−1)(a),

has a unique solution for c1, c2, ..., cn. Again if we denote w(x) =
∑n

k=1 ckyk(x),
x ∈ I, then w is a solution of (2.14) and satisfies the initial conditions w(a) = z(a),
w′(a) = z′(a), ...,w(n−1)(a) = z(n−1)(a). Again by Theorem 2.3.2 there exist only
one such solution. Therefore z ≡ w.

A set of n linearly independent solutions of a n-order linear homogeneous DE
is called a fundamental set of solutions for this DE. So, in solving such a DE
we are looking for a fundamental set of solutions. If the differential equation is not
homogeneous we have the following characterization of the general solution.

Theorem 2.3.7. If y1, y2, ..., yn are n linearly independent solutions of (2.14) defined
on the open interval I, and yp is a particular solution of (4.5), then any solution z
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of (4.5) can be written as

z(x) = yp(x) +
n∑

k=1

ckyk(x), x ∈ I ,

for some constants ck, k = 1...n.

PROOF. If yp is a particular solution of (4.5) then z− yp is a solution of (2.14).
Hence by Theorem 2.3.6, z(x) − yp(x) =

∑n
k=1 ckyk(x), x ∈ I, for some constants

ck, k = 1...n.

Definition The function
∑n

k=1 ckyk(x) is called a complementary function as-
sociated to (4.5).

2.3.1 Linear n-order linear DE with constant coefficients

We are going to study the particular situation of (4.5) or (2.14) in which the equation
is of the form

(2.18) a0y
(n) + a1y

(n−1) + ...+ any = 0.

where ak are just constant real numbers.

As in the case n = 2 the discussion here is going to be in terms of the solutions
of the characteristic equation:

(2.19) a0r
n + a1r

n−1 + ...+ an = 0.

Theorem 2.3.8. A fundamental set of solutions, S, for (2.18) can be obtained using
the following rules

(a) If a root r of the equation (2.19) is real and has multiplicity k then the contri-
bution of this root to S is with the functions

erx, xerx, ..., xk−1erx.

(b) If a root r = a + ib of the equation (2.19) is pure complex (i.e. b ̸= 0) and has
multiplicity k then the contribution of this root to S is with the functions

eax cos bx, eax sin bx, xeax cos bx, xeax sin bx, ..., xk−1eax cos bx, xk−1eax sin bx.
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A not very difficult proof of this theorem can be given if one uses an unified
approach of the cases (a) and (b) and employing complex-valued functions instead
of real-valued ones.

Examples: Problem 12, page 180. The differential equation is y(4)−3y(3)+3y′′−y′ =
0. The characteristic equation is r4−3r3+3r2−r = 0. The roots of this equation are
r1 = 1 with multiplicity 3 and r2 = 0. Hence the general solution of this equation is
y(x) = (c1 + c2x+ c3x

2)ex + c4

Problem 18, page 180. The differential equation is y(4) = 16y. The associated
characteristic equation is r4 − 16 = 0. The roots of this equation are r1,2 = ±2 and
r3,4 = ±2i. Therefore the general solution of this DE is y(x) = c1e

2x + c2e
−2x +

c3 cos 2x+ c4 sin 2x, x ∈ R.

Homework:

Section 3.2 pages 168-169, 14-20, 27, 28-30, 32-36, 43, 44;

Section 3.3 pages 180-181, 1-20, 24-26, 30-32, 34-36, 45, 46, 50;

2.4 Lecture VIII

Quotation: “To divide a cube into two other cubes, a fourth power or in
general any power whatever into two powers of the same denomination
above the second is impossible, and I have assuredly found an admirable
proof of this, but the margin is too narrow to contain it.” Pierre Fermat

Topics: Mechanical vibrations (damped, undamped, free, forced, ampli-
tude, circular frequency, phase angle, period, frequency, time lag, critical
damping, overdamped, underdamped), nonhomogeneous equations, unde-
termined coefficients, variation of parameters

Suppose we have a body of mass m attached at one end to an ordinary spring.
Hooke’s law says that the spring acts on the body with a force proportional to the
displacement from the equilibrium position.

Denote by x this displacement. Then this force is Fs = −kx where k is called
the spring constant. Also let us assume that at the other end the body is attached
to a shock absorber that provides a force that is proportional to the speed of the
body: Fr = −cdx

dt
. The number c is called the damping constant. If there is also

an external force Fe = F (t) then according to the Newton’s law:
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F = Fs + Fr + Fe = m
d2x

dt2

(2.20) m
d2x

dt2
+ c

dx

dt
+ kx(t) = F (t).

Some terminology here has become classic: if we ignore all friction forces, i.e.
c = 0 we say we have an undamped system and it is called damped if c > 0.
If the exterior force is zero we say the system is free and if the exterior forces are
present the movement is called forced motion.

2.4.1 Free undamped motion

We have basically the equation

(2.21) m
d2x

dt2
+ kx(t) = 0.

which has the general solution

x(t) = A cosω0t+B sinω0t,

where ω0 =
√

k/m called the circular frequency. This can be written as

(2.22) x(t) = C cos(ω0t− α),

where C =
√
A2 +B2 is called the amplitude and

(2.23) α =



arctan(B
A
) if A,B > 0,

π + arctan(B
A
) if A < 0,

2π + arctan(B
A
) if A > 0 and B < 0,

π/2 if A = 0 and B ≥ 0

3π/2 ifA = 0 and B < 0,

is called the phase angle. The period of this simple harmonic motion is
simply T = 2π

ω0
. The physical interpretation is the time necessary to complete one

full oscillation. The frequency is defined as the inverse of T , i.e. ν = 1
T
, is usually

measured in hetzs (Hz) and measures the number of complete cycles per second.
The time lag is the quantity δ = α

ω0
represents how long it takes to reach the first

time the amplitude.
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2.4.2 Free damped motion

The equation (4.5) becomes:

(2.24) x′′ + 2px′ + ω2
0x = 0,

where ω0 is as before and p = c
2m

. The characteristic equation has roots r1,2 = −p±√
p2 − ω2

0. As we have seen this leads to a discursion in terms of the discriminant

of the equation p2 − ω2
0 = c2−4mk

4m2 . We have a critical damping coefficient for ccr =

2
√
km. If c > ccr we say the system is over-damped in which case x(t) → 0 as

t → ∞ since the general solution is

x(t) = Aer1t +Ber2t, t ∈ R.

There are no oscillations around the equilibrium position and the body passes
through the equilibrium position at most once.

If c = ccr, the system is critically-damped and the general solution is of the
form

x(t) = (A+Bt)ert, t ∈ R.

and as before x(t) → 0 as t → ∞ and again the body passes through the equilibrium
position at most once.

If c < ccr we say the system is under-damped. The general solution in this
case is

x(t) = e−pt(A cosω1t+B sinω1t) = e−pt cos(ω1t− α),

using the same notations as before. In this case, ω1 =
√
4mk−c2

2m
is called circular

pseudo-frequency, and T1 =
2π
ω1

is its pseudo-period.

2.4.3 Nonhomogeneous linear equations, undetermined co-
efficients method

In order to determine a particular solution of a nonhomogeneous linear equation of
the form
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(2.25) a0y
(n) + a1y

(n−1) + ...+ any = f(x),

in special situations one can try a solution of a certain form. This method applies
whenever the function f is a finite linear combination of products of polynomials,
exponentials, cosines or sines. One needs to apply two rules.

Rule 1: If none of the terms of the function f contains solutions of the homogeneous
DE associated to (2.25), then the reccomended function to try is yp a combination of
the terms in f and all their derivatives that form a finite set of linearly independent
functions.

Example 1: Let us suppose the DE is y(3)+y = sinx+ex. Since the complementary
solution of this equation is yc = a1e

−x + [a2 cos(x
√
3/2)+ a3 sin(x

√
3/2)]ex/2 we can

try a particular solution to be y = c1 sinx + c2 cosx + c3e
x. After substituting in

the equation we get (c2 − c1) cosx + (c2 + c1) sinx + 2c3e
x = sinx + ex. So, it

follows that c1 = c2 = c3 = 1/2. So, the general solution of the given equation is
y(x) = a1e

−x + [a2 cos(x
√
3/2) + a3 sin(x

√
3/2)]ex/2 + 1

2
(sinx+ cosx+ ex)

Example 2: Suppose the DE is y′′ +2y′ − 3y = x2e2x. Because the complementary
solution of this equation is yc = a1e

x + a2e
−3x we can take as a particular solution

yp = (c1x
2 + c2x + c3)e

2x. Since y′p = [2c1x
2 + (2c1 + 2c2)x + c2 + 2c3]e

2x and
y′′p = [4c1 + (8c − 1 + 4c2)x + 2c1 + 4c2 + 4c3)e

2x, we see that y′′ + 2y′ − 3y =
[5c1x

2+(12c1+5c2)x+2c1+6c2+5c3)]e
2x = x2e2x. Therefore c1 =

1
5
, c2 =

−12
25

and
c3 =

62
125

. Thus the general solution of the given equation is y(x) = a1e
x + a2e

−3x +
25x2 − 60x+ 62

125
e2x.

Rule 2: If the function f contains terms which are solutions of the homogeneous
linear DE associated, then one should try as a particular solution, yp, a linear
combination of these terms and their derivatives which are linearly independent
multiplied by a power of x, say xs, where s is the smallest nonnegative integer
which makes all the new terms not to be solutions of the homogeneous problem.

Example 3: Let us assume the differential equation we want to solve is y′′+2y′+y =
x2e−x. So we need to determine the coefficients of the particular solution yp =
(c1x

4 + c2x
3 + c3x

2)e−x. After a simple calculation we get c1 =
1
12

and c2 = c3 = 0.

Example 4: Suppose we are given the DE y(4) − 4y(3) + 6y′′ − 4y′ + y = ex sinx.
The complementary solution is yc = (a1 + a2x + a3x

2 + a4x
3)ex we need to look

for a particular solution of the form yp = (c1 sinx+ c2 cosx)e
x. If we introduce the

differential operator D = d
dx

then the equation given is equivalent to (D − 1)4y =
ex sinx and we are looking for a particular solution yp = u(x)ex. Since (D− 1)yp =
(Du)ex (please check!) we see that (D− 1)4yp = (D4u)ex = (c1 sinx+ c2 cosx)e

x so
c1 = 1 and c2 = 0.
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2.4.4 Nonhomogeneous linear equations, Variation of pa-
rameters method

We are going to describe the method in the case n = 2 but this works in fact for the
n-order linear nonhomogeneous DE.

Theorem 2.4.1. A particular solution of the differential equation y′′ + p(x)y′ +
q(x)y = f(x) is given by

(2.26) yp = −y1(x)

∫
y2(x)f(x)

W (y1, y2)(x)
dx+ y2(x)

∫
y1(x)f(x)

W (y1, y2)(x)
dx,

where y1 and y2 is a fundamental set of solutions of y′′ + p(x)y′ + q(x)y = 0.

PROOF. We are looking for a solution of the form yp = u1(x)y1(x)+u2(x)y2(x).
Differentiating with respect to x we obtain yp = u′

1y1 + u′
2y2 + u1y

′
1 + u2y

′
2. We are

going to make an assumption that is going to simplify the next differentiation:

(2.27) u′
1y1 + u′

2y2 = 0.

Hence, y′′p = u′
1y

′
1 + u′

2y
′
2 + u1y

′′
1 + u2y

′′
2 and then y′′p + p(x)y′p + q(x)yp = u1(y

′′
1 +

p(x)y′1 + q(x)y1) + u2(y
′′
2 + p(x)y′2 + q(x)y1) + u′

1y
′
1 + u′

2y
′
2 = f(x). Thus this reduces

to

(2.28) u′
1y

′
1 + u′

2y
′
2 = f(x).

Using (2.27) and (2.28) to solve for u′
1 and u′

2 that gives u
′
1(x) = − y2(x)f(x)

W (y1, y2)(x)
and

u′
2(x) =

y1(x)f(x)

W (y1, y2)(x)
which gives (2.26).

Example: Let us work Problem 58, page 208. The DE is x2y′′ − 4xy′ + 6y = x3.
Dividing the equation by x2 we get y′′−4y′/x+6y/x2 = x. So, we have p(x) = −4/x
and q(x) = 6/x2 and f(x) = x. Two linearly independent solutions are given: y1 =
x2 and y2 = x3. We have W (y1, y2)(x) = 3x4 − 2x4 = x4 ̸= 0 for x ∈ (0,∞). Then

u′
1(x) = − y2(x)f(x)

W (y1,y2)(x)
= −1 which gives u1(x) = −x and u′

2(x) = y1(x)f(x)
W (y1,y2)(x)

= 1/x

which implies u2(x) = ln x. Therefore a particular solution of this equation is
yp = x3(lnx− 1) with x ∈ (0,∞).

Homework:

Section 3.4 pages 192-193, 1-4, 13, 15, 16, 32, 33;

Section 3.5 pages 207-208, 1-20, 31-40, 47-56, 58-63.
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2.5 Lecture IX

Quotation: “Finally, two days ago, I succeeded - not on account of my
hard efforts, but by the grace of the Lord. Like a sudden flash of light-
ning, the riddle was solved. I am unable to say what was the conducting
thread that connected what I previously knew with what made my success
possible.” Carl Friedrich Gauss

Topics: Forced Oscillations, Beats, Resonance, Boundary Value Prob-
lems

2.5.1 Undamped Forced Oscillations

In the previous lecture we studied the mechanical vibrations of a body under the
action of a spring, damped forces and exterior forces. The DE was:

(2.29) m
d2x

dt2
+ c

dx

dt
+ kx(t) = F (t).

Now, we assume the exterior force F (t) is of the form F (t) = F0 cosωt and the
damping coefficient c = 0. The differential equation that we need to study is of the
form

(2.30) mx′′ + kx = F0 cosωt,

which admits as a complementary solution xc(t) = c1 cosω0t + c2 sinω0t, where

ω0 =
√

k
m
. First let us assume that ω ̸= ω0. Then, to find a particular solution of

(4.5) we try xp(t) = A cosωt using the undetermined coefficient method (no term in
sinωt is needed as we can see from the following computation):

−Amω2 cosωt+ Ak cosωt = F0 cosωt,

which implies A = F0

k−mω2 = F0/m

ω2
0−ω2 . Therefore, the general solution of (4.5) is

x(t) = c1 cosω0t+ c2 sinω0t+
F0/m

ω2
0 − ω2

cosωt.

This shows that the solution is a combination of two harmonic oscillations having
different frequencies:
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(2.31) x(t) = C cos(ω0t− α) +
F0/m

ω2
0 − ω2

cosωt.

where C =
√

c21 + c22 and α is defined by (2.23) but some notation has changed so
we update it here:

α =


arctan( c2

c1
) if c1, c2 ≥ 0,

π + arctan( c2
c1
) if c1 < 0,

2π + arctan( c2
c1
) if c1 > 0 and c2 < 0, π/2 if c1 = 0 and c2 ≥ 0

3π/2 ifc1 = 0 and c2 < 0.

2.5.2 Beats

If the amplitude C =
√
c21 + c22 = F0/m

|ω2
0−ω2| and the phase α is zero if ω > ω0 or π if

ω < ω0, which can be accomplished by imposing the initial condition x(0) = x′(0) =
0, then the general solution can be written as

x(t) =
F0/m

ω2
0 − ω2

(cosωt− cosω0t)

or

x(t) =
2F0/m

ω2
0 − ω2

sin
(ω0 − ω)t

2
sin

(ω0 + ω)t

2
.

If we assume that the two frequencies are close to one another (i.e. ω ≈ ω0) the
expression above explains the behavior of the solution in some sense. We have a
product of two harmonic functions, one with a big circular frequency, (ω0 + ω)/2,
and the other with a smaller one |ω0 − ω|/2 which gives the phenomenon of beats.
The graph below is the graph of a function of this type: f(t) = sin(t) sin(30t) on
the interval t ∈ [−2π, 4π].
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2.5.3 Resonance

Suppose that we have ω getting closer and closer (within any given ϵ > 0) to ω0.

Then A(t) = F0/m

ω2
0−ω2 goes to infinity. This is the phenomenon of resonance. In fact

a particular solution of the problem (4.5) in the case ω = ω0 is xp(t) = t sinω0t. The
graph of the of a function of this type is included below:

This phenomenon is considered to be the explanation of a lot of disasters like the one
that happened in 1940 with the Tacoma Narrows Bridge near Seattle. It seeamed
like the exterior forces created by the wind created exactly this kind of explosion of
the amplitude of the oscillations in the vertical suspension cables. Another classical
example is the collapse of the Broughton Bridge near Manchester in England of 1831
when soldiers marched upon it.

2.5.4 Endpoint problems and eigenvalues

We are concerned with second order linear and homogenous DE which have a special
type of initial conditions. One such endpoint problem is:

(2.32)


y′′ + p(x)y′ + λq(x)y = 0

a1y(a) + a2y
′(a) = 0

b1y(b) + b2y
′(b) = 0,

where a ̸= b. In general only the trivial solution y ≡ 0 satisfies (2.32). But for
some values of the parameter λ the problem (2.32) may have non-zero solutions.
These values are called eigenvalues and the corresponding functions are called
eigenfunctions. A general method to solve (2.32) is to write the general solution
of the DE as y = Ay1(x, λ) + By2(x, λ), where y1 and y2 is a fundamental set of
solutions which is also going to depend of λ. We impose the two initial boundary
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conditions and rewrite these equations as a system in A and B:

(2.33)

{
α1(λ)A+ β1(λ)B = 0

α2(λ)A+ β2(λ)B = 0

This system in A and B has a non-trivial solution if and only if

(2.34) α1(λ)β2(λ)− α2(λ)β1(λ) = 0.

One solves this equation and obtains the eigenvalues of (2.32).

Example: Let us work Problem 6, page 240. The DE is y′′ + λy = 0 and the
boundary conditions are y′(0) = 0 and y(1) + y′(1) = 0. We are given that all
eigenvalues are nonnegative, so we write λ = α2.

(a) We have to show that λ = 0 is not an eigenvalue. If by way of contradiction
we assume it is, then some non-zero solution of our problem must exist: y(x) =
A+Bx, 0 = y′(0) = B and then 0 = y(1) + y′(1) = A which is a contradiction.

(b) We need to show that the eigenvalues of this problem are the solutions in
λ of the equation

tan
√
λ =

1√
λ
.

Let y(x) = A cosαt+B sinαt be the general solution of our DE without the bound-
ary conditions. Since y′(0) = 0 we have 0 = (−αA sinαt+ Bα cosαt)|t=0 or B = 0.
Then y(1) + y′(1) = 0 implies A cosα− Aα sinα = 0. Since we assume there exit a
non-zero solution, we must have A ̸= 0. Therefore α must satisfy cosα−α sinα = 0
or tanα = 1

α
. Corresponding eigenfunctions are y(x) = A cosαx. Since a picture is

worth a thousand words let us include the graph of λ → tan
√
λ and λ → 1√

λ
for

λ > 0.

Homework:

Section 3.6 page 219 Problems 21, 22;

Section 3.8 page 240 Problems 1-6, 13, 14.



Chapter 3

Systems of Differential Equations

3.1 Lecture X

Quotation: “We [he and Halmos] share a philosophy about linear al-
gebra: we think basis-free, we write basis-free, but when the chips are
down we close the office door and compute with matrices like fury. Paul
Halmos: Celebrating 50 Years of Mathematics.” Irving Kaplansky

3.1.1 A non-linear classical example: Kepler’s laws of plan-
etary motion

After analyzing observations of Tycho Brache, Johannes Kepler arrived to the fol-
lowing laws of planetary motion:

1. The orbits of planets are ellipses (with the sun in one of the foci).

2. The planets move in such a way on the orbit, that their corresponding ray wipes
out an area that varies at a constant rate.

3. The square of the planet’s period of revolution is proportional to the cube of the
major semi-axis of the elliptical orbit.

We are going to make an assumption here which is not very far from what it
happens in the reality (neglect the influence of the planet in question on the sun).
The sun contains more than 99% of the mass in the solar system, so the influence of
the planets on the sun could be, on a first analysis, neglected. Intuitively it is not
hard to believe that the planet X is moving in a fixed plane although this is also a

63
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consequence of the movement under the gravitational field. Let us take the origin
of the coordinates in this plane centered at the sun.

The position vector corresponding to the planet X is denoted here by
→
r =

x(t)
→
i + y(t)

→
j where

→
i = (1, 0) and

→
j = (0, 1). The distance between the sun and

the planet X is r =
√

x(t)2 + y(t)2. According to Newton’s law the planet X moves
under the action of a force which is inverse proportional to the square of the distance
r. The law can be written as a differential equation in the following way:

(3.1)
→
r
′′
= −k

→
r

r3
.

We are going to derive Kepler’s laws from (3.1). First let us observe that (3.1) is
just the vectorial form of the following second-order non-linear autonomous system
of differential equations:

(3.2)


x′′ = −k

x

(x2 + y2)3/2

y′′ = −k
y

(x2 + y2)3/2
.

It is really a significant fact that this can be reduced to a differential equation that we
know how to solve. To see this, let us first introduce polar coordinates, by assuming
that the trajectory is written in polar coordinates, r = r(θ), and we consider two
unit vectors that will help us simplify the calculations:

→
u = cos θ

→
i + sin θ

→
j

and
→
v = − sin θ

→
i + cos θ

→
j .

It is easy to check that
→
u ·→v = 0, and these two vectors clearly depend of time

because θ is. Differentiating these two vectors with respect to time we get

(3.3)

d
→
u
dt

= (− sin θ
→
i + cos θ

→
j )dθ

dt
=

→
v dθ

dt

and
d
→
v
dt

= (− cos θ
→
i − sin θ

→
j )dθ

dt
= −→

u dθ
dt
.

Since
→
r = r

→
u after differentiating this equality, we obtain

d
→
r

dt
= r′

→
u + r

d
→
u

dt
= r′

→
u + r

→
v
dθ

dt
.
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Differentiating one more time and using (3.3) we get:

d2
→
r

dt2
= r′′

→
u + 2r′

→
v
dθ

dt
− r

→
u

(
dθ

dt

)2

+ r
→
v
d2θ

dt2

or
d2

→
r

dt2
=

(
r′′ − r

(
dθ

dt

)2
)

→
u +

(
2r′

dθ

dt
+ r

d2θ

dt2

)
→
v = −k

→
u

r2
.

Identifying the coefficients of
→
u and

→
v in the above relation we obtain

(3.4)

{
r′′ − r

(
dθ
dt

)2
= − k

r2

2r′ dθ
dt
+ r d2θ

dt2
= 0.

The second relation in (3.4) is equivalent to d
dt
(r2 dθ

dt
) = 0 (r ̸= 0). This means

r2 dθ
dt

= h for some constant h. This proves the second Kepler’s law since

dA

dt
=

dA

dθ

dθ

dt
=

[
lim
∆θ→0

r(θ +∆θ)r(θ) sin(∆θ)

2∆θ

]
dθ

dt
=

1

2
r2
dθ

dt
=

h

2
.

The first equation in (3.4) can be transformed using the substitution r =
1

z

and changing the independent variable to θ instead of t:
dr

dt
= − 1

z2
dz

dθ

dθ

dt
= −h

dz

dθ

and then
d2r

dt2
= −h

d2z

dθ2
dθ

dt
= −h2z2

d2z

dθ2
which gives

−h2z2
d2z

dθ2
− 1

z
h2z4 = −kz2.

Equivalently, this can be written as

(3.5)
d2z

dθ2
+ z =

k

h2
.

As we have seen the general solution of this is z = A cos θ + B sin θ + k
h2 =

k
h2 (1 + e cos(θ − α)) where e = h2

k

√
A2 +B2, cosα = A√

A2+B2 and sinα = B√
A2+B2 .

This gives

(3.6) r =
L

1 + e cos(θ − α)
.
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which represents an ellipse if the eccentricity e satisfies 0 ≤ e < 1, a parabola if
e = 1 or a hyperbola if e > 1. Since the orbits of the planets are bounded it must
be the case that e < 1. Comets, by definition, are having parabolic or hyperbolic
orbits. [So, according to this definition, Halley’s comet is actually not a comet.]
This proves the first Kepler’s law.

To derive the third Kepler’s law, let us integrate the area formula dA
dt

= h/2
over the interval [0, T ], where T is the period of the orbit. Then we get hT/2 =
Area(Ellipse), but the area of an ellipse is equal to πab, where a and b are the two
semiaxes. The big axis is a = ( L

1+e
+ L

1−e
)/2 = L

1−e2
and b = L√

1−e2
. This means that

h2T 2

4
= π2L4

(1−e2)3
. From here we see that

T 2 =
4π2L

h2
a3 =

4π2

k
a3

or

T 2

a3
=

4π

k
= constant,

which is the third Kepler’s law.

3.1.2 Linear systems of differential equations

Our general setting here is going to be

(3.7) x′(t) = P (t)x(t) + f(t)

where P (t) is a n×nmatrix whose coefficients are continuous functions on an interval
I, x(t) = [x1(t), x2(t), ..., xn(t)]

t is the column vector of the unknown functions and
f(t) = [f1(t), f2(t), ..., fn(t)]

t is a vector-valued function assumed continuous on I as
well.

Theorem 3.1.1. (Existence and uniqueness) The initial value problem

(3.8)

{
x′(t) = P (t)x(t) + f(t)

x1(a) = b1, x2(a) = b2, ..., xn(a) = bn

with a ∈ I has a unique solution defined on I.

We notice here that the number of initial conditions in (4.2) is equal to the number
of unknowns.
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Theorem 3.1.2. (Principle of superposition) If y1, y2, ..., yn are solutions of
the homogeneous problem associated to (3.7), i.e. x′(t) = P (t)x(t), then the vector

function y =
n∑

k=1

ckyk is also a solution for every values of the constants ck.

Definition 3.1.3. As before, we say that a set of vector-valued functions, {f1, f2, ..., fk},

is called linearly independent if
k∑

i=1

cifk(t) = 0 for all t ∈ I, implies ci=0 for all

i = 1...k.

For a set of n vector valued functions, y1,...,yn, the Wronskian in this case,
W (y1, ..., yn), is constructed as the determinant of the matrix (yjk)j,k=1..n where
yj = [y1j, y2j, ..., ynj]

t. We have a similar characterization of linear independence.

Theorem 3.1.4. If the system x′(t) = P (t)x(t) admits y1, ...., yn as solutions then
these are linearly independent if and only if the Wronskian asssociated to them,
W (y1, ..., yn)(t), is not zero for all t ∈ I.

The proof of this theorem goes the same way as the one for the similar theorem
we studied in the case of n-order linear differential equations. Its proof is based on
the existence and uniqueness theorem. Based on this, let us remark that every
homogeneous system x′ = Px admits a fundamental set of solutions, i.e. a set
of n linearly independent solutions.

Indeed, one has to use the existence and uniqueness theorem and denote by
yk, the solution of the initial value problem

{
x′(t) = P (t)x(t)

x1(a) = 0, ..., xk(a) = 1, ...xn(a) = 0 (a ∈ I).

Then the Wronskian of the solutions {y1, y2, ..., yn} at a is equal to the deter-
minant of the identity matrix, which is, in particular, not zero. By Theorem 3.1.4
we then see that this set of solutions must be linearly independent.

Theorem 3.1.5. Suppose {y1, y2, ..., yn} is a fundamental system of solutions of the
system x′(t) = P (t)x(t). Then every other solution of this system, z, can be written

as z(t) =
n∑

k=1

ckyk(t), t ∈ I, for some parameters ck.

For the nonlinear we have the following theorem:
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Theorem 3.1.6. Suppose {y1, y2, ..., yn} is a fundamental system of solutions of the
system x′(t) = P (t)x(t) and yp is a particular solution of x′(t) = P (t)x(t) + f(t)
Then every other solution of x′(t) = P (t)x(t)+ f(t), say z, can be written as z(t) =

yp +
n∑

k=1

ckyk(t), t ∈ I, for some choice of the parameters ck.

Homework:

Section 3.6 page 219 Problems 21, 22;

Section 3.8 page 240 Problems 1-6, 13, 14.

3.2 Lecture XI

Quotation: “The reader will find no figures in this work. The methods
which I set forth do not require either constructions or geometrical or
mechanical reasonings: but only algebraic operations, subject to a regu-
lar and uniform rule of procedure.” Joseph-Louis Lagrange , Preface to
Mecanique Analytique.

3.2.1 The eigenvalue method for homogeneous with con-
stant coefficients

In this subsection we assume that the matrix-valued P (t) is a constant function:
A = (aj,k)j,k=1..n. We are going to consider the homogeneous problem

(3.9) x′(t) = Ax(t).

We remind the reader the definition of an eigenvalue and eigenvector for a matrix
A.

Definition 3.2.1. A complex number λ is called an eigenvalue for the matrix A
if there exist a nonzero vector u such that Au = λu.

It turns out that the eigenvalues of a matrix are the zeros of its characteristic
polynomial p(λ) = det(A− λI). We have the following simple theorem:

Theorem 3.2.2. (a) Suppose λ is a real eigenvalue of A with a corresponding eigen-
vector u. Then the vector-valued function v(t) = eλtu is a solution of the DE (3.9).

(b) If λ = p + iq and the corresponding eigenvector is u = a + ib the v1(t) =
ept(a cos qt− b sin qt), v2 = ept(b cos qt+ a sin qt) are solutions of the the DE (3.9).
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PROOF. (a) Since dv
dt

= λeλtu and Av(t) = eλtAu = λeλtu we see that the
function v satisfies (3.9).

(b) Because λ is a solution of the characteristic polynomial whose coefficients
are real, the complex conjugate of λ, λ, must also be an eigenvalue. In fact, the
complex conjugate of u, u = a− ib, is the corresponding eigenvector of λ. Because
w1 = eλtu is a solution of (3.9), as we have seen above, and then w2 = eλtu is also a
solution. Therefore, by the superposition principle, any linear combination of these
is a solution also. But then, we are done, since a simple calculation shows that
v1 = (w1 + w2)/2 and v2 = −i(w1 − w2)/2.

Theorem 3.2.3. Suppose the matrix A has n different solutions λ1, ..., λk, λk+1, λk+1, ...
where λj are real for j = 1...k and pure complex for the rest of them. We denote by
uj the corresponding eigenvectors of the eigenvalue λj. Then a fundamental system
of solutions of (3.9) can be given by {v1, ..., vn} where vj = eλtuj for j = 1...k and
vj = epjt(aj cos qt− bj sin qt), vj+1 = epjt(bj cos qt+ aj sin qt),... for j ≥ k+1, where
λj = p+ iq and uj = aj + ibj for j ≥ k + 1.

PROOF. Let us show that the system is linearly independent. First, let us
assume that all of the vector value functions are of the form vj = eλtuj. We observe
that u1, ..., un are linearly independent as vectors in Rn. Indeed, this is happening
because if

∑n
j=1 cjuj = 0 then, applying A several times to this equality, we get∑n

j=1 λj
scjuj = 0. This implies cjujl = 0 for every l = 1..n because the main the

determinant of the homogeneous linear system obtained is a Vandermonde determi-

nant. The Vandermonde determinant is equal to
∏
j<l

(λj − λl) ̸= 0. Because each

uj is not zero, there exist a component ujl which is not zero. Then we get cj = 0.
Hence u1, ..., un are linearly independent.

Using this we get that det([u1, ..., un]) ̸= 0. But then the Wronskian of v1, ..., vn
is e(λ1+...+λn)tdet([u1, ..., un]) ̸= 0. Using Theorem 3.1.4 we see that v1, ..., vn are
linearly independent.

The case when we have some pure complex eigenvalues, using elementary prop-
erties of determinants, we obtain that the Wronskian value for the given functions
v1, ..., vn change from the value calculated above for functions of the type eλjtuj just
by a multiple of a power of 2.

Example: Let’s take the Problem 20, page 312:
x′
1 = 5x2 + x2 + 3x3

x′
2 = x1 + 7x2 + x3

x′
3 = 3x1 + x2 + 5x3.
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Here the matrix is A =

 5 1 3
1 7 1
3 1 5

. The characteristic polynomial is p(λ) =

det(A− λ). Let us notice that

det

 5− λ 1 3
1 7− λ 1
3 1 5− λ

 = det

 9− λ 9− λ 9− λ
1 7− λ 1
3 1 5− λ

 =

(9− λ)det

 1 1 1
1 7− λ 1
3 1 5− λ

 = (9− λ)det

 1 1 1
0 6− λ 0
0 −2 2− λ

 =

(9− λ)(6− λ)(2− λ).

Hence λ1 = 9, λ2 = 2, and λ3 = 6. Three eigenvectors corresponding to these are
u1 = [1, 1, 1]t, u2 = [−1, 0, 1]t, u3 = [1,−2, 1]t. Then the general solution of this
system is 

x1 = c1e
9t − c2e

2t + c3e
6t

x2 = c1e
9t − 2c3e

6t

x3 = c1e
9t + c2e

2t + c3e
6t.

Homework:

Section 5.1 pages 297-298 Problems 1-30;

Section 5.2 page 312 problem 1-26;

3.3 Lexture XII

Quotation: “[Regarding
√
−1 or what we denote these days by i, the

building block of imaginary complex number system]: ... we can repudiate
completely and which we can abandon without regret because one does
not know what this pretended sign signifies nor what sense one ought to
attribute to it.” Augustin-Louis Cauchy said in 1847.

3.3.1 Multiplicity vs Dimension of the Eigenspace

In this part we assume that the system
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(3.10) x′(t) = Ax(t).

has constant coefficients: A = (aj,k)j,k=1..n, aj,k ∈ R.

Definition 3.3.1. We say that an eigenvalue λ0 has multiplicity m if the character-
istic polynomial p(λ) = det(A−λI) = (λ−λ0)

mq(λ) with q(λ0) ̸= 0. The multiplicity
of λ0 will be denoted by m(λ0).

Definition 3.3.2. The set of vectors Eλ0 := {v : Av = λ0v } is a linear subspace
invariant to A and the dimension of it is called the dimension of the eigenspace
associated to λ0 denoted de(λ0).

In general we have the following relationship between these numbers:

Theorem 3.3.3. If λ is an eigenvalue of A we have de(λ) ≤ m(λ).

In the case m(λ) = de(λ) we call λ complete. As we have seen before we
have the first general simple solution of the system (4.5) in the situation that every
eigenvalue is complete. In this case we also say that A is diagonalizable.

Theorem 3.3.4. If the eigenvalues of A are λ1, λ2, ..., λk for which de(λj) = m(λj)
for every j = 1...k then the general solution of (4.5) is

x(t) =
n∑

s=1

cse
λstvs

where v1, ..., vn is a basis of eigenvectors.

If we have de(λ) < m(λ) then we call the eigenvalue λ to be defective. Let us
notice that if an eigenvalue is not complete it is defective. For a defective eigenvalue
the number m(λ)− de(λ) is called the defect of λ.

3.4 Defect one and multiplicity two

Suppose that Av = λv and (A − λ)w = v. It turns out that in this case there is
always a solution in w of this last equation. Let us check that the vector function
u(t) = (w + tv)eλt is a solution of (4.5). We have u′(t) = [λ(w + tv) + v]eλt and
Au(t) = (λw + v + λtv)eλt. So, we have u′(t) = Au(t). This solution is linearly
independent of eλtv. Indeed, if c1e

λtv+c2(w+ tv)eλt = 0 for all t, we can get rid first
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of eλt to obtain c1v + c2(w+ tv) = 0 for all t. After differentiation with respect to t
we obtain c2v = 0 which implies c2 = 0 and then automatically c1 = 0. Hence the
two vector valued functions that one has to take corresponding to the eigenvalue λ
are: eλtv and eλt(w + tv).

Example: Let us take the following example A :=

 1 2 2
2 1 2
0 4 1

 and let us say we

want to solve the following initial value problem{
x′ = Ax,

x1(0) = 1, x2(0) = 2, x3(0) = 3.

The characteristic polynomial is

p(λ) = det

 1− λ 2 2
2 1− λ 2
0 4 1− λ

 = det

 0 (1 + λ)(3− λ)/2 (1 + λ)
2 1− λ 2
0 4 1− λ

 =

−2(1 + λ)

[
(3− λ)/2 1

4 1− λ

]
= −(λ+ 1)2(λ− 5).

Hence λ1 = λ2 = −1 with multiplicity 2 and λ3 = 5. Let us solve for the eigenvectors
of λ3 = 5: −4 2 2

2 −4 2
0 4 −4

 x1

x2

x3

 =

 0
0
0

 which gives simply a one-dimensional eigenspace x1

x2

x3

 = t

 1
1
1

, t ∈ R.

We will just take v1 =

 1
1
1

.
Now we solve (A − λ1)v = 0:

 2 2 2
2 2 2
0 4 2

 x1

x2

x3

 = 0 which gives also a one-

dimensional eigenspace generated by v2 =

 1
1
−2

.
Then we solve for (A − λ2)w = v2. One solution of this equation can be

taken to be w =

 3/2
0
−1

. Therefore the general solution of our equation is x(t) =
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c1v1e
5t + [c2v2 + c3(w + tv2)]e

−t. This gives
x1(t) = c1e

5t + [c2 + c3(3/2 + t)]e−t

x2(t) = c1e
5t + (c2 + c3t)e

−t

x3(t) = c1e
5t − [2c2 + c3(1 + 2t)]e−t

.

Then we need to determine the constants c1, c2, c3 in order to get the initial
condition satisfied. This gives c1 =

19
9
, c2 = −1

9
, and c3 = −2

3
. Finally substituting

we get 
x1(t) =

19
9
e5t − 10+6t

9
e−t

x2(t) =
19
9
e5t − 1+6t

9
e−t

x3(t) =
19
9
e5t − 8+12t

9
e−t

.

3.4.1 Generalized vectors

Let λ be an eigenvalue of A.

Definition 3.4.1. A vector v is called a rank r generalized eigenvector associ-
ated to λ if (A− λI)rv = 0 and (A− λI)r−1v ̸= 0.

Clearly, every eigenvector is a rank one generalized eigenvector. Notice that
if v is a rank r generalized eigenvector associated to λ then we can define v1 =
(A− λI)r−1v which is not zero by definition and satisfies Av1 = λv1. This means v1
is a regular eigenvector. We define in general v2 = (A−λI)r−2v,..., vr−1 = (A−λ)v,
vr = v. These vectors are all not equal to zero because otherwise v1 becomes
zero. In practice we need to work our way backwards in order to determine a
generalized eigenvector. First we find v1 as usual since it is a eigenvector. Then we
find v2 from the equation (A− λI)v2 = v1. Next we solve for v3 from the equation
(A−λI)v3 = v2 and so on. One can show that v1, v2, ..., vr are linearly independent.
We have the following important theorem from linear algebra which is sometime
called the Jordan representation theorem because it allows one to represent the
matrix, up to a similarity, i.e. SAS−1, as a direct sum of Jordan blocks: λIk + N
where N is a nilpotent matrix that has ones above the diagonal and zero for the
rest of the entries.

Theorem 3.4.2. For every n×n matrix A there exists a basis of generalized eigen-
vectors. For each eigenvalue λ of multiplicity m(λ) there exists m(λ) generalized
linearly independent vectors associated.

In general, if we have an eigenvector v1 such that vr is is a rank r general-
ized eigenvector corresponding to the eigenvalue λ, the contribution of these to a
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fundamental set of solutions for (4.5) is with the following set of functions:

u1(t) = eλtv1,
u2(t) = (v2 + tv1)e

λt,

u3(t) = (v3 + tv2 +
t2

2!
v1)e

λt,
...,

ur(t) = (vr + tvr−1 +
t2

2!
vr−2 + ...+ tr−1

(r−1)!
v1)e

λt.

One can show that these are linearly independent vector-valued functions
which are solutions of (4.5). We may have for a certain eigenvalue different sets
of this type. Putting all together will give a fundamental set of solutions of (4.5).
This fact is insured by the Theorem 3.4.2. In the case the eigenvalue is pure complex
we just take the real and imaginary parts of these vector valued functions.

Example: Find the general solution of the differential system:
x′
1 = x1 + x2

x′
2 = x2 + x3

x′
3 = x3

The matrix of this system is A =

 1 1 0
0 1 1
0 0 1

. Clearly we have λ = 1 as eigenvalue

of multiplicity 3 and a corresponding eigenvector is v1 =

 1
0
0

. Then the equation

(A − λI)v2 = v1 has a nonzero solution v2 =

 0
1
0

 . This makes v2 a rank 2

generalized vector. If we continue, the equation (A − λI)v3 = v2 has a nontrivial

solution v3 =

 0
0
1

. This means that v3 is a rank 3 generalized vector. Then a

fundamental set of solutions of our system is u1(t) = etv1, u2 = (tv1 + v2)e
t and

u3 = (t2v1/2 + tv2 + v3)e
t. Therefore, the general solution of the differential system

is


x1 = (c1e

t + c2t+ c3t
2/2)et

x2 = (c2 + tc3)e
t

x3 = c3e
t

.
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3.4.2 Fundamental Matrix of Solutions, Exponential Matri-
ces

Suppose we are still solving a system x′ = Ax as before. A fundamental matrix
of solutions is a n× n matrix formed with n linearly independent solutions of the
system (4.5). Such a matrix can be simply calculated by using the Taylor formula,
ex = 1 + x+ x2/2! + ..., for matrices instead of numbers.

Definition 3.4.3. The matrix etA is the result of the infinite series
∑∞

k=0A
k tk

k!
,

t ∈ R.

Theorem 3.4.4. The matrix etA is a fundamental matrix of solutions of x′ = Ax.

The solution of the initial value problem

{
x′ = Ax

x(0) = x0

is given by x(t) = etAx0.

Example: Let us take Problem 12, page 356 as an exemplification of this.

The system given is

{
x′
1 = 5x1 − 4x2

x′
2 = 3x1 − 2x2

with the matrix A =

[
5 −4
3 −2

]
. We

need to calculate etA.

The characteristic polynomial of A is p(λ) = λ2 − 3λ + 2. (In general the

characteristic polynomial for 2× 2 matrix A =

[
a b
c d

]
is λ2 − tr(A)λ+ det(A),

where tr(A) = a + d). The eigenvalues in this case are λ1 = 1 and λ2 = 2. Two

eigenvectors are in this case v1 =

[
1
1

]
and v2 =

[
4
3

]
corresponding to λ1 and λ2

respectively. If we denote the matrix [v1|v2] by S :=

[
1 4
1 3

]
then let us observe

that AS = [v1|2v2] = SD where D :=

[
1 0
0 2

]
is a diagonal matrix with entries

exactly the two eigenvalues. Therefore A = SDS−1. This allows us to calculate

An = SDnS−1. Notice that etD =

[
et 0
0 e2t

]
. In general the inverse of a 2 × 2

matrix matrix A =

[
a b
c d

]
is given by A−1 = 1

det(A)

[
d −b
−c a

]
. Hence

etA = SetDS−1 =

[
1 4
1 3

] [
et 0
0 e2t

] [
−3 4
1 −1

]
or

etA =

[
−3et + 4e2t 4et − 4e2t

−3et + 3e2t 4et − 3e2t

]
.
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Homework:

Section 5.4 pages 342-343 Problems 23-33;

Section 5.5 page 356 problems 1-20, 25-30;



Chapter 4

Nonlinear Systems and Qualitative
Methods

4.1 Lecture XIII

Quotation: “I entered an omnibus to go to some place or other. At that
moment when I put my foot on the step the idea came to me, without
anything in my former thoughts seeming to have paved the way for it,
that the transformations I had used to define the Fuchsian functions were
identical with non-Euclidean geometry.” Henri Poincaré

4.1.1 Nonlinear systems and phenomena, linear and almost
linear systems

We are going to discuss the behavior for solutions of autonomous systems DE of the
form

(4.1)

{
dx
dt

= F (x, y)
dy
dt

= G(x, y)

Let us assume that the two functions F and G are continuous on a region
R = {(x, y) ∈ R2|a < x < b, c < y < d}. This region is going to be called phase
plane. By a similar theorem of existence and uniqueness we have a unique solution
to the IVP:

77
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(4.2)


dx
dt

= F (x, y)
dy
dt

= G(x, y)

x(0) = x0, y(0) = y0

where (x0, y0) ∈ R. The curve (x(t), y(t)), t ∈ (−ϵ, β) represented in R is called a
trajectory. For each point of R there exist one and only one trajectory containing
it.

Definition 4.1.1. A critical point for the system (4.5) is a point (a, b) ∈ R such
that F (a, b) = G(a, b) = 0.

Clearly, if (a, b) is a critical point the constant function (x(t), y(t)) = (a, b) for
every t ∈ R is a solution of (4.5) which is called an equilibrium solution. We
observe that the trajectory of a critical point is just a point.

The phase portrait is a sketch of the phase plane and a few typical trajec-
tories together with all critical points.

Definition 4.1.2. A critical point (a, b) is called a node if either every trajectory
approaches (a, b) or every trajectory recedes form (a, b) tangent to a line at (a, b). A
node can be a sink if all trajectories approach the critical point or a source if all
trajectories emanate from it.

A node can be proper or improper depending upon the number of tangent
lines that the trajectories have: infinitely many or only two. The following notion
of stability is the same as for ODE case:

Definition 4.1.3. A critical point (a, b) is called stable if for every ϵ > 0 there
exists a δ > 0 such that if |x0 − a| < δ and |y0 − b| < δ the solution of the IVP (4.2)
statistics |x(t)− a| < ϵ and |y(t)− b| < ϵ.

In general nodal sinks are stable critical points. A critical point which is not
stable is called unstable.

A critical point can be stable without having the trajectories approach the
critical point. If a stable critical point is surrounded by simple closed trajectories
representing periodic solutions then such a critical point is called (stable) center.

Definition 4.1.4. A critical point is called asymptotically stable if it is stable
and for some δ > 0 if |x0−a| < δ and |y0−b| < δ then lim

t→∞
x(t) = a and lim

t→∞
y(t) = b.
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An asymptotically stable critical point with the property that every trajectory
spirals around it is called spiral sink. A spiral source is a critical point as before
but with time t going to −∞ instead of ∞. If for a critical point there are two
trajectories that approach the critical point but all the other ones are unbounded as
t → ∞ then we say the critical point is a saddle point. Under certain conditions
one can show that there are only four possibilities for trajectories:

1. (x(t), y(t)) approaches a critical point (a, b) as t → ∞;

2. (x(t), y(t)) is unbounded;

3. (x(t), y(t)) is a periodic solution;

4. (x(t), y(t)) spirals toward a periodic solution as t → ∞.

4.2 Linear and almost linear systems

In the linear case, as usual, we can always have more to say. A critical point (a, b)
is called isolated if there are no other critical points in a neighborhood of (a, b).
We assume that F and G are differentiable around (a, b). The linearized sytem
associated to (4.5) is

(4.3)

{
dx
dt

= ∂F
∂x
(a, b)(x− a) + ∂F

∂y
(a, b)(y − b)

dy
dt

= ∂G
∂x
(a, b)(x− a) + ∂G

∂y
(a, b)(y − b).

A system is said to be almost linear at the isolated critical point (a, b) if

lim
x→a,y→b

F (x, y)− ∂F
∂x
(a, b)(x− a)− ∂F

∂y
(a, b)(y − b)√

(x− a)2 + (y − b)2
= 0

and

lim
x→a,y→b

G(x, y)− ∂G
∂x
(a, b)(x− a)− ∂G

∂y
(a, b)(y − b)√

(x− a)2 + (y − b)2
= 0.

In this case its linearization is (4.8). This is a linear system with constant
coefficients. In practice, the functions F and G are continuously differentiable. This
insures that the system (4.5) is almost linear around a critical point.
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Eigenvalues λ1,λ2 Type of critical point
Real, different, same sign Improper node

Real, unequal, opposite signs Saddle
Real and equal, Proper or improper node
Pure complex, Spiral point
Pure imaginary Center

Table 4.1: Type of critical points for linear systems

4.3 Critical points classification of linear systems

We are going to consider only two dimensional linear systems of the type

(4.4)

{
x′ = ax+ by

y′ = cx+ dy

which we already know how to solve. Let us assume that the two eigenvalues are λ1

and λ2. Then, what type of critical point (0, 0) of (4.4) is could be determined by
the following chart:

For the stability of the critical point of (4.4) we have:

Theorem 4.3.1. Let λ1 and λ2 be the eigenvalues of the system (4.4) which has
(0, 0) as an isolated critical point. The critical point (0, 0) is

(a) Asymptotically stable if the real parts of λ1 and λ2 are both negative;

(b) Stable but not asymptotically stable if the real parts of λ1 and λ2 are both
zero;

(c) Unstable if either λ1 or λ2 has a positive real part.

The next theorem says that for an almost liner system the effect of small per-
turbations around an isolated critical point is almost determined by its linearization
at that point.

Theorem 4.3.2. Let λ1 and λ2 be the eigenvalues of the linearization system at an
isolated critical point of an almost linear system (4.5). Then

(a) If λ1 = λ2, we have a node or spiral point; in this case the critical point is
asymptotically stable if λ1 = λ2 < 0 or unstable if λ1 = λ2 > 0.

(b) If λ1 and λ2 are pure imaginary, then we have either a center or a spiral
point (and undetermined stability)

(c) Otherwise the type and stability of (a, b) is the same as the one for the
linearization system.
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Homework:

Section 6.1 pages 375-376 Problems 1-8;

Section 6.2 page 389 Problems 1-32;

4.4 Lecture XIV

Quotation: “Everything is vague to a degree you do not realize till you
have tried to make it precise.” Bertrand Russell British author, mathe-
matician and philosopher (1872 - 1970)

4.4.1 Nonlinear spring

Let us assume that Hooks’s law is “corrected” a little to: F = −kx + βx3. In a
sense, it is natural to think that there are some other terms in the Taylor expansion
of the force acting on a body of mass m in terms of the displacement x. In this case
the differential equation that we obtain from Newton’s law is mx′′ = −kx + βx3.
We can turn this into a system if we introduce y = dx

dt
:

(4.5)

{
dx
dt

= y
dy
dt

= − k
m
x+ β

m
x3.

The discussion of what happens with the mechanical system depends clearly
on β.

Case β < 0 “hard spring”: In this situation we have only one critical point:
(0, 0). The Jacobian of the almost linear system (4.5) is

J(x, y) =

[
0 1

− k
m
+ 3 β

m
x2 0

]

so at the critical point J(0, 0) =

[
0 1

− k
m

0

]
The eigenvalues of J(0, 0) are ±i

√
k
m

and according to the theorem about transfer

of stability and type from the previous lecture we see that all we can say is that
(0, 0) is either a center or a spiral point. From the point stability the theorem does
not say what happens.
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But we can determine what is going on by integrating (4.5). By multiplying
the second equation in (4.5) by y and integrating we obtain

y2

2
+

kx2

2m
+

|β|x4

4m
= constant.

These curves are almost like circles around (0, 0) (see figure below). The stability
but not asymptotic stability of (0, 0) follows.

Figure 1

This means that we have almost regular oscillations around the equilibrium
position.

Case β > 0 “soft spring”: The system has two more critical points: (±
√

k
β
, 0).

The Jacobian at the critical points is at the critical point J(±
√

k
β
, 0) =

[
0 1
2k
m

0

]
which means the eigenvalues are real one positive and on negative:±

√
2k
m
. so by

the same theorem we have that both the new critical points are saddle points and
unstable.

In fact if we use the method of integration as before we get

y2

2
+

kx2

2m
− βx4

4m
= c.

The phase portrait is as below:
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Figure 2

This suggests that for a certain constant c (say c0, the Energy) we get solutions
which go directly to an static position without any oscillations. For values of c
smaller than that quantity we have oscillations around the equilibrium position.
For values of the energy bigger than c0 the displacement goes to infinity. This is not
corresponding to anything real so it seems like this model does not work.

4.4.2 Chaos

Let us start with the logistic differential equation

(4.6)
dP

dt
= aP − bP 2, (a, b > 0)

which models in general a bounded population.

We are going to look into the discretization of this equation according to
Euler’s method: compute Pn+1 − Pn = (aPn − bP 2

n)h which are the values of the
approximation of P (t) at the times tk = t0 + kh, where h is the step size. This can
written as Pn+1 = rPn − sP 2

n where r = 1 + ah and s = bh. Then if we substitute
Pn = r

s
xn then the recurrence becomes

(4.7) xn+1 = rxn(1− xn).

We notice that the function f(x) = rx(1− x) has a maximum at x = 1/2 equal to
r/4. So, for r < 4 this function maps the interval [0, 1] into itself. So one can iterate
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and compute the sequence defined in (4.7) for large values of n. It turns out that for
r < rc where rc ≈ 3.57.. the behavior of the sequence can be predicted in the sense
that approaches a certain number of limit points. The sequence becomes chaotic for
r = rc, i.e. there are infinitely many limit points that fill out the interval [0, 1]. In
other words the sequence is unpredictable. For instance we cannot tell, unless we
compute it precisely where x1000000 is in the interval [0, 1].

The number of periodic orbits for r < rc changes at some specific values rk.
The mathematician Mitchell Feigenbaum discovered that

lim
n→∞

rk − rk−1

rk+1 − rk
= constant ≈ 4.669...

This constant appears in other places in mathematics, so it gained a status similar
to those constants such as π, e or γ. Some differential equations have the same type
of behavior for certain values of the parameters. Such examples are mx′′ + cx′ +
kx+ βx3 = F0 cosωt (forced Duffing equation) or the famous Lorenz system

(4.8)


dx
dt

= −sx+ sy
dy
dt

= −xz + rx− y
dz
dt

= xy − bz.

Homework:

Section 6.4 page 418, Problems 2, 5-8;

Section 7.1 pages 444-445, Problems 1-42.



Chapter 5

Laplace Transform

5.1 Lecture XV

Quotation: “Given for one instant an intelligence which could com-
prehend all the forces by which nature is animated and the respective
positions of the beings which compose it, if moreover this intelligence
were vast enough to submit these data to analysis, it would embrace in
the same formula both the movements of the largest bodies in the uni-
verse and those of the lightest atom; to it nothing would be uncertain,
and the future as the past would be present to its eyes.” Pierre Simon
De Laplace (1749− 1827), French mathematician, philosopher. Theorie
Analytique de Probabilites: Introduction, v. VII, Oeuvres (1812-1820).

5.1.1 Definition and a few examples

The Laplace transform is a transformation on functions as the operator D of dif-
ferentiation that we have encountered earlier. The study of it in this course is
motivated by the fact that some differential equations can be converted via the
Laplace transform into an algebraic equation. This is in general thought as being
easier to solve and then one obtains the solution of the given differential equation
by taking the inverse Laplace transform for the solution of the the corresponding
algebraic equation.

In order to define this transform we need a few definitions beforehand.

Definition 5.1.1. A function f is called piecewise continuous on the interval [a, b]
if there is a partition of the interval x0 = a < x1 < x2 < ... < xn = b such that f is

85
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continuous on each interval (xk, xk+1) and it has sided limits at each point xk.

A function f defined on an unbounded interval is said to be piecewise contin-
uous if it is so on each bounded subinterval.

Definition 5.1.2. A function f : [0,∞) → R is called of exponential type at ∞ if
there exist nonnegative constants M , c and T such that |f(t)| ≤ Mect for all t ≥ T .

Definition 5.1.3. For every function f : [0,∞) → R which is piecewise continuous
on some interval [T,∞), integrable on [0, T ] and of exponential type at infinity the
Laplace transform L(f) is the new function of the variable s defined by

L(f)(s) =
∫ ∞

0

e−stf(t)dt.

The domain of L(f) is taken to be the set of all s for which the improper integral

exists, i.e. lim
n→∞

∫ n

0

e−stf(t)dt exists.

The next theorem tells us that the above definition is meaningful. We are
going to denote the class of these functions by D(L).

Theorem 5.1.4. Under the assumption in the definition (5.1.3)the Laplace trans-
form L(f)(s) exists for every s > c.

Before we prove this theorem let us compute the Laplace transform for some
simple functions.

Example 1: Suppose we take f(t) = 1 for all t ∈ [0,∞). Then L(f)(s) =∫∞
0

e−stdt = − e−st

s
|∞0 = 1

s
, for all s > 0. Therefore we write

L(1)(s) = 1

s
, s > 0.

Example 2: Let us take f(t) = ect for all t ≥ 0. Then if s > c, L(f)(s) =∫∞
0

e−stectdt =
∫∞
0

e−(s−c)tdt = − e−(s−c)t

s−c
|∞0 = 1

s−c
. Hence

L(ec.)(s) = 1

s− c
, s > c.

PROOF of Theorem 5.1.4. We need to show that the limit lim
n→∞

∫ n

0

e−stf(t)dt

exists. Using Cauchy’s characterization of the existence of a limit it suffices to show

that lim
n,m→∞

∫ n

m

e−stf(t)dt = 0. We have the estimate
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(5.1)

|
∫ n

m
e−stf(t)dt| ≤

∫ n

m
e−st|f(t)|dt ≤ M

∫ n

m
e−(s−c)tdt =

M
(s−c)

(e−(s−c)m − e−(s−c)n) → 0

as m,n → ∞ (T ≤ m < n) provided that s > c.

Note: Cauchy’s characterization is one of the most common tools in analysis.
Augustin Louis Cauchy was born on 21st of August, 1789 in Paris, France, and died
May 23rd, 1857 in Sceaux near Paris.

5.1.2 General Properties

Corollary 5.1.5. Let us assume that f is as in the Theorem 5.1.4. Then lim
s→∞

L(f)(s) =
0.

PROOF. Since we know the limit in the definition of L(f)(s) exists we let n go
to infinity in the sequence of inequalities (5.1) but fix m = T . That gives

|L(f)(s)| ≤ |
∫ m

0

e−stf(t)dt|+ M

s− c
,

for every s > c and the conclusion of our corollary follows from this and a theorem
of convergence under the integral sign.

The Laplace transform may exist even for functions that are unbounded on a
finite interval. One such example is f(t) = ta , t > 0 with a > −1. Notice that for
a ∈ (−1, 0) the integral

∫∞
0

e−sttadt is also improper at 0. To compute L(f)(s) we
change the variable st = u (s > 0) and obtain

L(f)(s) = 1

sa+1

∫ ∞

0

e−uuadu =
Γ(a+ 1)

sa+1
,

where Γ is defined by Γ(x) =
∫∞
0

e−ttx−1dx and exists for all x > 0. An integration
by parts shows that

Γ(x+ 1) =

∫ ∞

0

e−ttxdx = −e−ttx|t=∞
t=0 + x

∫ ∞

0

e−ttx−1dx = xΓ(x).

because Γ(1) = 1 we get by induction Γ(n+ 1) = n! for n ∈ N.

In particular we get for instance L(t5)(s) = Γ(6)
s6

= 5!
s6
, s > 0. For fractional

values of a one needs to know Γ(a). One interesting fact here is that Γ(1/2) =
√
π.

To see this let us change the variable t = u2 in Γ(1/2) =
∫∞
0

e−tt−1/2dt.
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We obtain Γ(1/2) =
∫∞
0

e−u2
u−12udu = 2

∫∞
0

e−u2
du. Now we calculate

Γ(1/2)2 = 4
∫∞
0

e−u2
du
∫∞
0

e−v2dv = 4
∫∞
0

∫∞
0

e−(u2+v2)dudv. We then use polar

coordinates u = r cos s, v = r sin s. So we get Γ(1/2)2 = 4
∫ π/2

0
(
∫∞
0

e−r2rdr)ds = π
which implies Γ(1/2) =

√
π. This allows one to compute for instance Γ(3/2) =

3
2
Γ(1/2) = 3

√
π

2
.

Proposition 5.1.6. The Laplace transform is linear.

PROOF. The integral and the limit are linear transformations on functions. One
needs to check also that D(L) is a linear space of functions.

Example: L(3t2+2
√
t)(s) = 3L(t2)(s)+2L(

√
t)(s) = 3

2!

s3
+2

Γ(3/2)

s3/2
=

6

s3
+

3
√
π

s
√
s
.

Another example we would like to do involves the Laplace transform of a
complex valued function which is a natural extension of the Laplace transform of
real valued functions.

Example: We take f(t) = ezt where z = a + ib. Notice that |f(t)| = eat so this

function is of exponential type at infinity. We have L(f)(s) =

∫ ∞

0

e−steztdt =∫ ∞

0

e−(s−z)tdt = lim
t→∞

(
1

s− z
− e−(s−z)t

s− z

)
=

1

s− z
, provided that s > a.

This is happening because | e−(s−z)t

s−z
| = e−(s−a)t

|s−z| → 0 as t → ∞. Since L
is linear ReL(f)(s) = L(eat cos bt)(s) = Re 1

s−z
= s−a

(s−a)2+b2
and ImL(f)(s) =

L(eat sin bt)(s) = Im 1
s−z

= b
(s−a)2+b2

.

Example: This example involves the Laplace transform of a function denoted by u
and defined by

u(t) =

{
1 if x ≥ 0

0 if x < 0,
or a translation of u which is denoted by ua and defined

as ua(t) = u(t− a), t ∈ R.

We get L(ua)(s) =
∫∞
0

e−stua(t)dt =
∫∞
a

e−stdt = e−sa

s
. Let us record the main

formulas that we have discovered so far in the table 5.1.2:

Proposition 5.1.7. The Laplace transform is a one-to-one map in the following
sense: L(f)(s) = L(g)(s) for all s > s0 implies that the functions f and g coincide
at all their continuity points.

Since this is true we are allowed to take the inverse of the Laplace transform
denoted by L−1 by simply inverting the table above (in other words it is not am-
biguous to talk about the inverse of the Laplace transform).
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f(t) L(f)(s)
tn n!

sn+1

eat cos bt s−a
(s−a)2+b2

eat sin bt b
(s−a)2+b2

ua(t)
e−sa

s

ta (a > −1) Γ(a+1)
sa+1

eat 1
s−a

Table 5.1: Laplace Transform Formulae

Theorem 5.1.8. Given the function f : [0,∞) → R of exponential type at infinity
which is continuous and whose derivative is piecewise continuous, then L(f ′) exists
and L(f ′)(s) = sL(f)(s)− f(0).

PROOF. First we assume that the derivative is continuous at all points. Then
an integration by parts will give

L(f)(s) =
∫∞
0

e−stf ′(t)dt = e−stf(t)|∞0 + s
∫∞
0

e−stf(t)dt = sL(f)(s) − f(0),
where lim

t→∞
e−stf(t) = 0 because of the hypothesis on f to be of exponential type.

The proof in the general case goes the same way with the only change that the
fundamental formula of calculus holds true for f under the given hypothesis.

Corollary 5.1.9. If the function f is of exponential type and it has derivatives of
order k, (k ≤ n), exist with f (n) piecewise continuous then

L(fn)(s) = snL(f)(s)− sn−1f(0)− ...− f (n−1)(0).

Let us solve a differential equation using the Laplace transform now. Problem
6, page 455 asks for the following initial value problem of a second order linear DE
with constant coefficients but non-homogeneous: x′′ + 4x = cos t, x(0) = x′(0) = 0.
We first apply the Laplace transform to both sides of the equation and use the
formula for the Laplace transform of the derivative of a function: s2L(x)(s)−sx(0)−
x′(0) + 4L(x) = s

s2+1
. Hence we get L(x)(s)(s2 + 4) = s

s2+1
. Solving for L(x)(s) we

obtain

(5.2) L(x)(s) = s

(s2 + 1)(s2 + 4)
.

In order to take the inverse Laplace transform we need to write the right hand
side of (5.2) in its partial fraction decomposition. There are some shortcuts that
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one can use in order to obtain the partial fraction decomposition. These techniques
will be discussed in class. In this simple case it is easy to see that we have

L(x)(s) = 1

3

s

(s2 + 1)
− 1

3

s

(s2 + 4)
.

Equivalently, if we remember the table 5.1.2 of Laplace transforms we can rewrite
this equality as

L(x)(s) = 1

3
L(cos t)(s)− 1

3
L(cos 2t).

Because the Laplace transform is linear and injective we conclude that x(t) =
1
3
cos t− 1

3
cos 2t for all t.

Theorem 5.1.10. If f is piecewise continuous and of exponential type at infinity
then

L(
∫ t

0

f(x)dx)(s) =
1

s
L(f)(s).

PROOF. One can see that g(t) =
∫ t

0
f(x)dx is continuous and whose derivative

is piecewise continuous. It is easy to see that it is also of exponential type. Hence
one can apply the Theorem 5.1.8 to g: L(g′)(s) = sL(g)(s) − g(0). This is exactly
the identity that we want to establish.

Homework:

Section 7.2 page 455, Problems 1-37.
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5.2 Lecture XVI

Quotation: “Mathematics is the search of structure out there in the
most incredible places of the human intellect and at the same time ap-
parently unrelated, in all the corners of what presents itself as reality.”
Anonymous

5.3 More properties of the Laplace transform

We have shown how to obtain the Laplace transform for the functions in the table
below:

f(t) L(f)(s)
tn, n ∈ N n!

sn+1 , s > 0
eat cos bt s−a

(s−a)2+b2
, s > a

eat sin bt b
(s−a)2+b2

, s > a

ua(t)
e−sa

s
, s > 0

ta (a > −1) Γ(a+1)
sa+1 , s > 0

ezt 1
s−z

, s > Rez

Using the theorem about the Laplace transform of the derivative of a function
we may obtain additional transforms using the technique exemplified in the next
example:

Example: Problem 27, page 456. We consider the function fn(t) = tnezt with
z = a + ib and n ∈ N. Then f is continuous of exponential type (c = Re z)
and its derivative exists everywhere, f ′

n(t) = ntn−1ezt + ztnezt, and f ′ is piecewise
continuous (in fact continuous on [0,∞)). Hence L(f ′)(s) = sL(f)(s) − f(0) or
nL(fn−1)(s) + zL(fn)(s) = sL(fn)(s). Solving for L(fn)(s) we get

L(fn)(s) =
n

s− z
L(fn−1)(s), s > Re z.

This recurrence can be used inductively to prove then that

(5.3) L(tnezt)(s) = n!

(s− z)n+1
, s > Re z.

Let us observe that this formula generalizes several of the formulas that we have
seen so far but will give two new ones if we take the real part and the imaginary
part of both sides (z = a+ ib):

(5.4) L(tneat cos bt)(s) =
n!

∑
0≤j≤(n+1)/2

(
n+1
2j

)
(−1)j(s− a)n+1−2jb2j

[(s− a)2 + b2]n+1
,
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and

(5.5) L(tneat sin bt)(s) =
n!

∑
0≤j≤n/2

(
n+1
2j+1

)
(−1)j(s− a)n−2jb2j+1

[(s− a)2 + b2]n+1
.

Using the theorem about the Laplace transform of the integral of a function we
may also obtain some inverse Laplace transforms of functions that contain a power
of s at the denominator. We again use an example to exemplify this.

Example: Problem 24, page 456. In this problem we need to find the Laplace
transform of F (s) = 1

s(s+1)(s+2)
. Because L(

∫ t

0
f(x)dx)(s) = L(f)(s)

s
we see that if the

right hand side is F (s) we need to find what the inverse Laplace transform just for

G(s) =
1

(s+ 1)(s+ 2)
=

1

s+ 1
− 1

s+ 2
= L(e−t)(s)− L(e−2t)(s).

Therefore L−1(G)(t) = e−t − e−2t and our function is f(t) =

∫ t

0

e−x − e−2xdx =

1− e−x − (
1

2
− 1

2
e−2t) =

1

2
+

e−2t

2
− e−t.

Next we are going to generalize the theorem about the Laplace transform of
the derivative of a function.

Theorem 5.3.1. Suppose f : [0,∞) → C is piecewise continuous of exponential
type (of constant c), which has a derivative f ′ at the points of continuity with the
exception of maybe an isolated set of points. Then

(5.6) L(f ′)(s) = sL(f)(s)−f(0)−
∑

t discontinuity
point of f

e−st[f(t+0)−f(t−0)], s > c.

PROOF. Let us assume that the origin t = 0 and the discontinuity points of f are
{tn}n∈D; so t1 = 0 < t2 < ..., D ⊂ N. Next we assume first that f ′ exists on each in-

terval (tk, tk+1). Then L(f ′)(s) = lim
a→∞

∫ a

0

e−stf ′(t)dt = lim
a→∞

[

n(a)+1∑
n=1

∫ t′n+1

t′n

e−stf ′(t)dt]

where n(a) is the greatest index for which tn(a) < a and t′k = tk if k ≤ n(a) and
t′n(a)+1 = a .

On each interval [t′n, t
′
n+1] we apply the integration by parts to the function

which becomes continuous at the endpoints when f is extended with the sided limits:
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∫ t′n+1

t′n

e−stf ′(t)dt = e−stf(t)|t=t′n+1−0

t=t′n+0 + s

∫ t′n+1

t′n

e−stf(t)dt. Then

L(f ′)(s) = lim
a→∞

s

∫ a

0

e−stf(t)dt+ lim
a→∞

[

n(a)+1∑
n=1

e−stn+1f(t′n+1 − 0)− e−stnf(t′n + 0)]

. Rearranging the summation and letting a → ∞ we obtain (5.6). The general case
is handled the same way with the observation we made before that the fundamental
formula of calculus works under our more relaxed assumptions.

For an application let us work Problem 34, page 456. We apply formula (5.6)
for f(x) = (−1)⌊x⌋ where ⌊x⌋ is the greatest integer function. Figure 1 below gives
an idea of what the graph of f looks like.

Figure 1

This function has a discontinuity for every n ∈ N and a jump of f(2n + 0) −
f(2n−0) = 1−(−1) = 2 for even discontinuity points and f(2n+1+0)−f(2n+1−
0) = −1− 1 = −2 for every odd one. In other words f(n+ 0)− f(n− 0) = 2(−1)n

for every n ∈ N. Since the derivative is basically zero where it exists applying (5.6)

we obtain 0 = sL(f)(s)− f(0)−
∞∑
n=1

2(−1)ne−ns. Using the formula for summing a

sequence in geometric progression (1+ r+ r2+ ... = 1
1−r

, whenever r < 1) this turns
into

sL(f)(s) = 1 + 2(−e−s)
1

1 + e−s
=

1− e−s

1 + e−s
.

Another way of writing this using the hyperbolic functions sinhx =
ex − e−x

2
,

coshx =
ex + e−x

2
is L(f)(s) = 1

s

es/2 − e−s/2

es/2 + e−s/2
=

1

s
tanh(s/2).

Theorem 5.3.2. (Translation along the s-axis) If f is such that L(f)(s) exists
for all s > c then L(eatf(t))(s) exists for all s > a+ c and

L(eatf(t))(s) = L(f)(s− a).
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The proof of this theorem is straightforward. Let us work out a few other examples
from this next homework:

Problem 10, page 465. Find the inverse Laplace transform of the function F (s) =
2s− 3

9s2 − 12s+ 20
.

Observe that

F (s) =
2s− 3

(3s− 2)2 + 16
=

2s− 3

9[(s− 2/3)2 + 16/9]
, or

F (s) =
2

9

s− 2/3

(s− 2/3)2 + (4/3)2
− 5

36

4/3

(s− 2/3)2 + (4/3)2
.

Hence L−1(F )(t) = 2
9
e2t/3 cos 4t/3− 5

36
e2t/3 sin 4t/3.

Problem 34, page 465. The DE is x(4) + 13x′′ + 36x = 0 with initial conditions
x(0) = x′′(0) = 0, x′(0) = 2 and x′′′(0) = −13. Applying the Laplace transform we
get s4L(x)−s3x(0)−s2x′(0)−sx′′(0)−x′′′(0)+13[s2L(x)−sx(0)−x′(0)]+36L(x) = 0.

Substituting the initial conditions we get

L(x)(s)(s4 + 13s2 + 36)− 2s2 + 13− 26 = 0.

Solving for L(x) gives L(x)(s) = 2s2 + 13

s4 + 13s2 + 36
=

s2 + 4 + s2 + 9

(s2 + 4)(s2 + 9)
, or L(x)(s) =

1

2

2

s2 + 4
+

1

3

3

s2 + 9
=

1

2
L(sin 2t)(s) + 1

3
L(sin 3t)(s).

Taking the inverse Laplace transform we obtain x(t) = 1
2
sin 2t+ 1

3
sin 3t.

Problem 24, page 465 Find the inverse Laplace transform for the function

F (s) =
s

s4 + 4a4
. Using the idea given in the textbook we factor the denominator

of fraction in F :

F (s) =
s

(s2 − 2as+ 2a2)(s2 + 2as+ 2a2)
=

s

[(s− a)2 + a2][(s+ a)2 + a2]

=
1

4a

(
1

(s− a)2 + a2
− 1

(s+ a)2 + a2

)
=

1

4a2

(
a

(s− a)2 + a2
− a

(s+ a)2 + a2

)
.

Hence L−1(F )(t) =
1

4a2
(
eat sin at− e−at sin at

)
or

L−1(F )(t) =
1

2a2
sinh at sin at.
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Homework:

Section 7.3 page 455, Problems 1-38.

5.4 Lecture XVII

Quotation: “The key to make progress in the process of learning math-
ematics is to ask the right questions.” Anonymous

5.4.1 Convolution of two functions

Let us assume we have two functions, f and g, which are piecewise continuous and
of exponential type (with the same constant c)

Definition 5.4.1. The convolution of f and g is the new function (f ⋆ g)(t) =∫ t

0
f(x)g(t− x)dx, t ≥ 0.

The convolution defined this way is commutative: f ⋆ g = g ⋆ f . This can be
easily seen by a change of variables: y = t− x,

(f ⋆ g)(t) =
∫ t

0
f(x)g(t− x)dx =

∫ 0

t
f(t− y)g(y)(−dy)

=
∫ t

0
g(y)f(t− y)dy = (g ⋆ f)(t).

Theorem 5.4.2. The convolution of the two functions of exponential type (with
constant c) is also of exponential type (with constant c+ϵ ). The Laplace transform of
the convolution of two functions is the product of the individual Laplace transforms:

L(f ⋆ g)(s) = L(f)(s)L(g)(s), s > c

PROOF. Let us denote by F (s) the Laplace transform of f and by G(s) the
Laplace transfrom of g. If s > c then F (s)G(s) =

∫∞
0

e−stf(t)dt
∫∞
0

e−sxg(x)dx. The
function of two variables (t, x)− > e−stf(t)e−sxg(x) is absolutely integrable over the
domain [0,∞)×[0,∞) with the same proof as we did when we showed the existence of
the Laplace transform. Then we can rewrite F (s)G(s) =

∫∞
0

∫∞
0

e−s(t+x)f(t)g(x)dtdx.
We can make a substitution now t = u and t + x = v. The domain [0,∞)× [0,∞)
can now be described as {(v, u) : v ∈ [0,∞)and u ∈ [0, v]}. The Jacobian of the

transformation is J(x, t) = det

[
1 0
−1 1

]
= 1, so, the double integral becomes

F (s)G(s) =

∫ ∞

0

e−sv

[∫ v

0

f(u)g(v − u)du

]
dv = L(f ∗ g)(s).
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The double integral can be understood in a limit sense (over rectangles) which
makes the above computation possible.

Let us use this theorem to solve Problem 14, page 474. We need to find
the inverse Laplace transform of the function F (s) = s

s4+5s2+4
. We can rewrite

F (s) = s
(s2+1)(s2+4)

= L(sin t)(s)L(cos 2t)(s)

So, L−1(F )(t) =
∫ t

0
sinx cos 2(t−x) =

∫ t

0
1
2
[sin(2t−x)+ sin(3x− 2t)]dx. Then

L−1(F )(t) = 1
2
cos(2t− x)|x=t

x=0 − 1
6
cos(3x− 2t)|x=t

x=0 =

1
2
(cos t− cos 2t)− 1

6
(cos t− cos 2t) = 1

3
(cos t− cos 2t), t ≥ 0.

Theorem 5.4.3. [Integration of Transform formula] Suppose that f is piece-
wise continuous for t ≥ 0, has exponential type at infinity (with constant c) and

that lim
t→0+

f(t)

t
exists . If the Laplace transform of f is F , then the improper integral∫∞

s
F (u)du exists for every s > c and

L
(
f(t)

t

)
(s) =

∫ ∞

s

F (u)du, s > c.

PROOF. Since F (s) =
∫∞
0

e−stf(t)dt the function F is continuous. The im-
proper integral

∫∞
s

F (u)du exists because of the estimate we got when we proved
the existence of the Laplace transform. Then∫ ∞

s

F (u)du =

∫ ∞

s

∫ ∞

0

e−utf(t)dtdu.

It turns out that the function of two variables e−utf(t) is integrable on the domain
[s,∞)× [0,∞) in the sense of limits on arbitrary rectangles and so the interchange
of the integrals is possible. Thus

∫ ∞

s

F (u)du =

∫ ∞

0

[∫ ∞

s

e−utdu

]
f(t)dt =

∫ ∞

0

e−stf(t)

t
dt.

As we can see the hypothesis that lim
t→0+

f(t)

t
exists can be relaxed to the exis-

tence of the integral
∫ 1

0
|f(t)|

t
dt.

We are going to work out Problem 20, page 474. We need to find the Laplace
transform of g(t) = 1−cos 2t

t
. Consider the map f(t) = 1− cos 2t. We have L(f)(s) =
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1
s
− s

s2+4
. Since lim

t→0+

f(t)

t
= 0 we can apply Theorem 5.4.3 and obtain L(g)(s) =∫ ∞

s

1

u
− u

u2 + 4
du = ln

u√
u2 + 4

|∞s = ln

√
s2 + 4

s
for all s > 0.

Theorem 5.4.4. [Differentiation of the transform] If f is piecewise continuous
and of exponential type (with constant c), then if F is the Laplace transform of f
we have

L(−tf(t))(s) = F ′(s), s > c.

PROOF. Since F (s) =
∫∞
0

e−stf(t)dt and L(−tf(t))(s) =
∫∞
0

e−st(−tf(t))dt
exist, we can calculate

F (s)− F (s0)

s− s0
− L(−tf(t))(s0) =

∫ ∞

0

e−st − e−s0t − (s− s0)(−t)e−s0t

s− s0
f(t)dt.

Using the generalized mean value theorem: h(b) = h(a) + (b − a)h′(a) +
(b−a)2

2
h′′(ξ) for some ξ ∈ (a, b), we obtain (h(u) = e−ut, a = s0, b = s)

e−st − e−s0t − (s− s0)(−t)e−s0t

s− s0
= t2

s− s0
2

e−ξ(s)t, ξ(s) ∈ (s0, s).

Hence

(5.7) |F (s)− F (s0)

s− s0
− L(−tf(t))(s0)| ≤

|s− s0|
2

∫ ∞

0

e−s0tt2|f(t)|dt → 0,

as s tends to s0. The integral
∫∞
0

e−s0tt2|f(t)|dt is finite if s0 > c, fact that goes the
same way as the existence of the Laplace transform. Then passing to the limit in
(5.7) (s → s0) we get L(−tf(t))(s) = F ′(s), s > c.

Applying this theorem several time we get:

Corollary 5.4.5. Under the same assumptions of Theorem 5.4.4, for every n ∈ N,
L(tnf(t))(s) = (−1)nF (n)(s), s > c.

Example: Problem 26, page 474. We need to calculate the inverse Laplace trans-

form of F (s) = arctan 3
s+2

. Since F ′(s) =
− 3

(s+2)2

9
(s+2)2

+ 1
= − 3

(s+ 2)2 + 9
. If f

is the inverse Laplace transform of F then by Theorem 5.4.4 we get −tf(t) =
L−1(− 3

(s+2)2+9
) = −e−2t sin 3t. This gives f(t) = e−2t sin 3t

t
.
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Another application of this formula is finding a nontrivial solution of the
Bessel’s type equation in Problem 34: tx′′ + (4t − 2)x′ + (13t − 4)x = 0, x(0) = 0.
We denote by X(s) = L(x(t))(s). We have L(x′′)(s) = s2X(s)− a where x′(0) = a,
and L(x′)(s) = sX(s). Hence L(tx′′) = − d

ds
(s2X(s) − a) = −2sX(s) − s2X ′(s),

L(tx′)(s) = −X(s)− sX ′(s) and L(tx) = −X ′(s).

Then the equation becomes −2sX(s)− s2X ′(s)−4X(s)−4sX ′(s)−2sX(s)−

13X ′(s)−4X(s) = 0. This reduces to a simple differential equation inX(s):
X ′(s)

X(s)
=

− 8 + 4s

(s+ 2)2 + 9
.

Integrating we get ln |X(s)| = −2 ln[(s + 2)2 + 9] + C and from here X(s) =
k

[(s+2)2+9]2
. Because L−1( k

[(s+2)2+9]
)(t) = k

3
e−2t sin 3t, then we can use the convolution

formula to get x(t) = k
9

∫ t

0
(e−2u sin 3u)(e−2(t−u) sin 3(t − u))du = ke−2t

18

∫ t

0
cos(6u −

3t)− cos 3tdu. Therefore x(t) = ke−2t

18
( sin(6u−3t)

6
|t0 − t cos 3t) = ke−2t

54
(sin 3t− 3t cos 3t)

or x(t) = Ae−2t(sin 3t− 3t cos 3t), t ≥ 0 .

Now we are going to review all the important formulae that we have introduced
so far:
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f(t) on [0,∞) F (s) = L(f)(s)
|f(t)| ≤ Mect

∫∞
0

e−stf(t)dt, s > c

tn, n ∈ N n!
sn+1 , s > 0

eat cos bt s−a
(s−a)2+b2

, s > a

eat sin bt b
(s−a)2+b2

, s > a

teat cos bt (s−a)2−b2

[(s−a)2+b2]2
, s > a

teat sin bt 2b(s−a)
[(s−a)2+b2]2

, s > a

ua(t)
e−sa

s
, s > 0

ta (a > −1) Γ(a+1)
sa+1 , s > 0

ezt 1
s−z

, s > Re z

tnezt n!
(s−z)n+1 , s > Re z

eztf(t) F (s− z), s > c+Rez
f ′(t) sF (s)− f(0), s > c

(f ∗ g)(t) F (s)G(s), s > c
tf(t) −F ′(s),∫ t

0
f(x)dx F (s)/s, s > c
f(t)/t

∫∞
s

F (u)du, s > c
some less important

(−1)⌊x⌋
1

s
tanh

s

2
, s > 0

1
2b3

eat(sin bt− bt cos bt) 1
[(s−a)2+b2]2

1
2b
eat(sin bt+ bt cos bt) (s−a)2

[(s−a)2+b2]2

eat cosh bt s−a
(s−a)2−b2

, s > a

eat sinh bt b
(s−a)2−b2

, s > a

Homework:

Section 7.3 page 474, Problems 1-38.
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5.5 Lecture XVIII

Quotation: “When a truth is necessary, the reason for it can be found
by analysis, that is, by resolving it into simpler ideas and truths until the
primary ones are reached. It is this way that in mathematics specula-
tive theorems and practical canons are reduced by analysis to definitions,
axioms and postulates. ” (Leibniz, 1670)

5.5.1 Periodic and piecewise continuous input functions

We have already showed that L(ua)(s) =
e−as

s
, s > 0, where

ua(t) =

{
0 for t < a

1 for t ≥ a.

Theorem 5.5.1. Let us consider a ≥ 0. If L(f)(s) exists for s > c then

L(ua(t)f(t− a))(s) = e−saL(f)(s), for s > a.

PROOF. This is just a simple calculation:

L(ua(t)f(t))(s) =
∫∞
0

e−stua(t)f(t− a)dt =
∫∞
a

e−stf(t− a)dt =∫∞
0

e−s(u+a)f(u)du = e−saL(f)(s).
for all s > c.

Let us observe that if 0 < a < b then ua − ub is the function:

ua,b(t) =


0 for x < a

1 for x ∈ [a, b),

0 for x ≥ b.

whose graph is

Figure 12
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and it is called the characteristic function of the interval [a, b). Let us solve Problem
18, page 484: we need to compute the Laplace transform of

f(t) =

{
cos 1

2
πt if 3 ≤ t ≤ 5

0 if t < 3 or t > 5.

This function is essentially the same as t → u3,5(t) cos
1
2
πt for t ∈ [0,∞). Hence

the Laplace transform of it is L(u3(t) cos
tπ
2
) − L(u5(t) cos

tπ
2
). Because cos tπ

2
=

cos( (t−3)π
2

+ 3π
2
) = sin (t−3)π

2
and similarly for cos tπ

2
= cos( (t−5)π

2
+ 5π

2
) = − sin (t−5)π

2
,

we obtain that L(f)(s) = (e−5t + e−3t)
2π

4s2 + π2
.

The last theorem that we are going to do is about the transform of a periodic
function:

Theorem 5.5.2. [Laplace transform of periodic function] If f is periodic
piecewise continuous with period p on [0,∞) the Laplace transfrom of f exists and

L(f)(s) = 1

1− e−ps

∫ p

0

e−stf(t)dt, s > 0.

PROOF. This is also a calculation:

L(f)(s) =
∫∞
0

e−stf(t)dt =
∑∞

k=0

∫ k(p+1)

kp
e−stf(t)dt∑∞

k=0

∫ p

0
e−st−kpsf(t+ kp)dt =

∑∞
k=0 e

−kps
∫ p

0
e−stf(t)dt = 1

1−e−ps

∫ p

0
e−stf(t)dt

using the sum of the geometric progression
∞∑
k=0

e−kps =
1

1− e−sp
.

We are going to use this Theorem to compute the Laplace transform of the
function in Problem 28, page 485. The graph of f (for a = 1 is shown below):

Figure 2

Basically we need to compute∫ 2a

0

e−stf(t)dt =

∫ a

0

e−sttdt = e−st(
t

−s
− 1

s2
)|t=a
t=0 =

1− (1 + sa)e−sa

s2
.
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So, the Laplace transform of f is L(f)(s) = 1− (1 + sa)e−sa

s2(1− e−2sa)
.

5.5.2 Impulses and delta function

Definition 5.5.3. The Dirac delta function at a, denoted by δa is a transformation
on continuous functions defined by δa(g) = g(a) for every continuous function.

In general most of the maps φ having properties of linearity and bounded on
continuous functions defined for t ∈ [0,∞) is of the form φ(g) =

∫∞
0

g(t)h(t)dt. The
map δa is an example not of this form. When we have a differential equation of the
type, let’s say, as in Problem 2, page 495, x′′ + 4x = δ0 + δπ, with initial conditions
x(0) = x′(0) = 0, we interpret this as the model of movement of a mass (m = 1)
attached to a spring with no dashpot with two instantaneous blows of unit intensity
at moments t = 0 and t = π.

So if we apply both functions to the function t → e−st we get s2X(s)+4X(s) =
1 + e−sπ. Then we solve for X(s) = 1

s2+4
+ e−sπ

s2+4
and then take the inverse Laplace

transform x(t) = sin 2t
2

+ uπ(t)
sin 2(t−π)

2
or x(t) = (1 + uπ(t))

sin 2t

2

The graph of this solution is shown below. This solution is still a continuous
function but it is not differentiable at every point.

Figure 3

Now we summarize all the important Laplace transform formulae that we have
studied so far:
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f(t) on [0,∞) F (s) = L(f)(s)
|f(t)| ≤ Mect

∫∞
0

e−stf(t)dt, s > c

tn, n ∈ N n!
sn+1 , s > 0

eat cos bt s−a
(s−a)2+b2

, s > a

eat sin bt b
(s−a)2+b2

, s > a

teat cos bt (s−a)2−b2

(s−a)2+b2
, s > a

teat sin bt 2b(s−a)
(s−a)2+b2

, s > a

ua(t)
e−sa

s
, s > 0

ta (a > −1) Γ(a+1)
sa+1 , s > 0

ezt 1
s−z

, s > Re z

tnezt n!
(s−z)n+1 , s > Re z

eztf(t) F (s− z), s > c+Rez
f ′(t) sF (s)− f(0), s > c

(f ∗ g)(t) F (s)G(s), s > c
tf(t) −F ′(s),∫ t

0
f(x)dx F (s)/s, s > c
f(t)/t

∫∞
s

F (u)du, s > c
some less important

(−1)⌊x⌋
tanh s

2

s
, s > c

1
2b3

eat(sin bt− kt cos bt) 1
[(s−a)2+b2]2

1
2b
eat(sin bt+ kt cos bt) (s−a)2

[(s−a)2+b2]2

eat cosh bt s−a
(s−a)2−b2

, s > a

eat sinh bt b
(s−a)2−b2

, s > a

ua(t)f(t− a) e−saL(f)(s)
f(t) periodic f of period p 1

1−e−sp

∫ p

0
f(t)dt

Homework:

Section 7.5 page 484, Problems 1-35.

Section 7.6, pages 495, Problems 1-8.
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Chapter 6

Power Series Methods

6.1 Lecture XIX

Quotation: “The heart of mathematics is its problems.” Paul Halmos

6.1.1 Power series review

The method that we are going to study in this Chapter applies to a variety of DE
such as the Bessel’s equation (of order n),

x2y′′ + xy′ + (x2 − n2)y = 0,

or Legendre’s equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

which appear in many applications.

A power series around the point x = a is an infinite sum of the form

(6.1)
∞∑
n=0

an(z − a)n

where as usual the convergence is understood in the usual sense, i.e.

lim
n→∞

n∑
k=0

ak(z − a)k

105
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exists.

The series (2.27) defines a function f(z) on a disc of radius R (called radius
of convergence ) centered at a: Da(R) := {z||z − a| < R}.

The radius of convergence is given by the formula:

(6.2)
1

R
= lim sup

n→∞
|an|

1
n .

The series (6.1) converges at least for z = a but we are going to be interested
in series for which the radius of convergence is a positive real number or infinity.
Most of the elementary functions have a power series expansion around any point
which is not a singularity (all the derivative are defined there). The function defined
by a power series is continuous and differentiable on Da(R). Moreover the derivative
can be computed differentiating term by term. The derivative has the same radius
of convergence and hence the function is infinitely many times differentiable. The
coefficients an are given then by the formula:

an =
f (n)(a)

n!
, n ≥ 0.

This allows one to compute various power series for most of the elementary
functions. Two power series can be added or subtracted term by term. This corre-
sponds to adding or subtracting the corresponding functions. The product has to
be done in the Cauchy sense. The following theorem is important:

Theorem 6.1.1. [Identity Principle] If
∑∞

n=0 anx
n =

∑∞
n=0 bnx

n for every x in
some open interval then an = bn for all n ≥ 0.

6.1.2 Series solutions around ordinary points

We are going to consider solving the DE

(6.3) y′′ + P (x)y′ +Q(x)y = 0

where P and Q are functions defined around point a. If these functions have a power
series expansion around a then the point x = a is called an ordinary point for
(6.3). A point a will be called singular for (6.3) if at least one of the functions P
or Q is not analytic around a (which means there is no power series centered at a
that sums up to the given function). The next theorem shows what happens in the
situation of ordinary points.



6.1. LECTURE XIX 107

Theorem 6.1.2. There are two linearly independent solutions of (6.3) around every
ordinary point whose radius of convergence is at least as large as the distance from
a to the nearest (real or complex) singular point of (6.3).

Let us solve the Legendre Equation:

(6.4) (1− x2)y′′ − 2xy′ + α(α + 1)y = 0,

or if we put it in the form (6.3) we get

y′′ +
−2x

1− x2
y′ +

α(α + 1)

1− x2
y = 0,

which makes it clear that a = 0 is an ordinary point for (6.4). According to the
theorem above there are two linearly independent solutions that can be written as
power series whose radius of convergence is at least 1. Let us look for a solution of

the form y(x) =
∞∑
k=0

akx
k.

Then the equation (6.4) becomes

(1− x2)
∞∑
k=0

k(k − 1)akx
k−2 − 2x

∞∑
k=0

akkx
k−1 + α(α + 1)

∞∑
k=0

akx
k = 0

or

∞∑
k=0

(k + 2)(k + 1)ak+2x
k −

∞∑
k=0

k(k − 1)akx
k − 2

∞∑
k=0

akkx
k + α(α + 1)

∞∑
k=0

akx
k = 0.

Using the identity principle we get the following equations in terms of the
coefficients ak:

(k + 2)(k + 1)ak+2 − k(k − 1)ak − 2kak + α(α + 1)ak = 0, k ≥ 0.

This gives

(6.5) ak+2 =
(k − α)(k + α + 1)

(k + 1)(k + 2)
ak, k ≥ 0.
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Instead of continuing this in the most general case we are going to make an
assumption here that may help to see how something interesting could happen here.

Let’s say α = 3. Then (6.5) gives a2 = −12
2
a0 = −6a0, a3 = −10

6
a1 = −5

3
a1,

a4 = − 6
12
a2 = 3a0, a5 = 0. From here we see that the next coefficients a2k+1 = 0 for

k ≥ 2. So, one of the solutions is y1(x) = a1(x− 5
3
x3) = a1

3
(3x− 5x3) = −2a1

3
P3(x)

where P3(x) =
1
2
(5x3 − 3x) is the called Legendre polynomial of degree 3. Similarly

for every α a non-negative integer n one of the solutions is just going to be a
polynomial which turns out to be the Legendre polynomial of degree n.

Next we rewrite (6.3) as

(6.6) y′′ +
p(x)

x
y′ +

q(x)

x2
y = 0.

Definition 6.1.3. The singular point x = 0 of (6.3) is a regular singular point
if the functions p and q are both analytic around 0. Otherwise 0 is an irregular
singular point.

6.1.3 The Method of Frobenius

We are going to use a slightly modified version of power series method to solve
differential equations of second order for which x = 0 is regular singular point. As
before consider the equation written in the form

(6.7) x2y′′ + xp(x)y′ + q(x)y = 0.

The idea is to look simply for a solution of the form

(6.8) xr

∞∑
k=0

akx
k, x > 0.

We have the following theorem:

Theorem 6.1.4. Suppose that x = 0 is a regular singular point for (6.7) and let
p(x) =

∑∞
k=0 pkx

k and q(x) =
∑∞

k=0 pkx
k be the power series representations of p

and q. If we denote the solutions of the quadratic equation r(r − 1) + p0r + q0 = 0
by r1 and r2 then:

(a) if r1 and r2 are real, say r1 ≥ r2, there exist a solution of the form (6.8)
with r = r1;

(b) if r1 and r2 are real, say r1 ≥ r2, and r1 − r2 is not an integer (i.e.
(p0 − 1)2 − 4q0 is not the square of an integer) the there exists a second linearly
independent solution of (6.7) of the form (6.8) with r = r2.
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Let us solve Problem 18, page 535. We need to solve the DE: 2xy′′+3y′−y = 0.
In this case if we write this equation in the form (6.7) we get x2y′′ + 3

2
xy′ − x

2
y = 0.

This gives x = 0 as a regular singular point and p(x) = 3
2
and q(x) = x

2
. Hence

the equation in r becomes r(r − 1) + 3
2
r = 0 which has two solutions: r1 = 0 and

r2 = −1
2
.

Therefore, according to the Theorem 6.1.4 we must have two linearly indepen-
dent solutions of the form (6.8). Working out the details of this we get

y1(x) =
∞∑
k=0

xk

k!(2k + 1)!!
,

and

y2(x) =
1√
x

[
1 +

∞∑
k=1

xk

k!(2k − 1)!!

]
.

Homework:

Section 8.1, Problems pages 509-510, 23, 25 and 27;

Section 8.2, page 520, Problems 5, 6, 32, 35.

Section 8.3, page 5535, Problems 1-31, 35, 38 and 39.

6.2 Lecture XX

6.2.1 When r1 − r2 is an integer

We remind the reader the type of differential equation to which we have applied the
method of Frobenius:

(6.9) y′′ +
p(x)

x
y′ +

q(x)

x2
y = 0.

where x = 0 is a regular singular point of (6.11), i.e., the two functions p and q
are analytic around x = 0.

We are going to take an example from the text to study what may happen in
the situation r1 − r2 is a positive integer.

Problem 28, page 535: xy′′+2y′−4xy = 0. In this particular case p(x) = 2
and q(x) = −4x2. The equation for r (indicitial equation ) becomes r(r − 1) +
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2r = 0 with solutions r1 = 0 and r2 = −1. This makes r1 − r2 an integer. We

are going to study the existence of the second solution: y = x−1

∞∑
k=0

akx
k. Since

y′ =
∞∑
k=0

(k − 1)akx
k−2 and y′′ =

∞∑
k=0

(k − 1)(k − 2)akx
k−3, after we substitute in the

given equation we get:

∞∑
k=0

(k − 1)(k − 2)akx
k−2 +

∞∑
k=0

2(k − 1)akx
k−2 −

∞∑
k=0

4akx
k = 0

or
∞∑
k=0

(k − 1)kakx
k−2 −

∞∑
k=0

4akx
k = 0.

Since the first two terms in the first summation are zero we obtain only one

summation if we shift the index (k − 2 → k) and then combine the two:
∞∑
k=0

[(k +

1)(k + 2)ak+2 − 4ak]x
k = 0.

This gives ak+2 = 4
ak

(k + 1)(k + 2)
for all k ≥ 0.

From here we see that a2n =
4n

(2n)!
a0 and a2n+1 =

4n

(2n+ 1)!
a1 for all n ≥ 0.

Therefore a general solution of our equation is

y(x) = a0x
−1

∞∑
n=0

4nx2n

(2n)!
+ a1

∞∑
n=0

4nx2n

(2n+ 1)!
.

Let us observe that we actually get an analytic solution and one which is
unbounded around x = 0. Using the functions sinh and cosh we can re-write the
general solution as

y(x) = a0x
−1 cosh 2x+ a1

sinh 2x

2x
.

So, in this case we have two solutions in the form (6.8).

To show that there are cases in which there is only one solution of the form
(6.8) let us take Problem 39, page 536:

(a) Show that the Bessel’s equation of order 1,

x2y′′ + xy′ + (x2 − 1)y = 0
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has exponents r1 = 1 and r2 = −1 at x = 0, and the Frobenius series corresponding
to r = 1 is

J1(x) =
x

2

∞∑
n=0

(−1)nx2n

n!(n+ 1)!22n
.

(b) Show that there is no Frobenius solution corresponding to the smaller exponent
r2 = −1; that is, it is impossible to determine the coefficients in

(6.10) y2(x) = x−1

∞∑
n=0

cnx
n.

Solution: Let us start by differentiating and substituting in the Bessel’s equa-
tion with (6.10) as recommended (calculations will cover both cases): y′2(x) =∑∞

n=0 cn(n− 1)xn−2 and y′′2(x) =
∑∞

n=0 cn(n− 1)(n− 2)xn−3.

The Bessel’s equation becomes

∞∑
n=0

cn(n− 1)(n− 2)xn−1 +
∞∑
n=0

cn(n− 1)xn−1 + (x2 − 1)
∞∑
n=0

cnx
n−1 = 0.

The first two sums can be combined together and together with the last sum
after multiplication by x2 − 1 and distributing:

∞∑
n=0

cn[n
2 − 2n]xn−1 +

∞∑
n=0

cnx
n+1 = 0.

Shifting the index of summation in the first sum we get

∞∑
n=−2

cn+2(n
2 + 2n)xn+1 +

∞∑
n=0

cnx
n+1 = 0.

For n = −2 we get c0 × 0 = 0 which is satisfied for every c0. For n = −1 we
obtain c1 = 0. For n = 0 we get c2 × 0 + c0 = 0 which implies c0 = 0. For n ≥ 1 we
have cn+2 = − cn

n(n+2)
. This implies c2n+1 = 0 for all n ≥ 0 and

c2n+2 = − c2n
2n(2n+ 2)

= − c2n
n(n+ 1)22

=
c2n−2

(n− 1)nn(n+ 1)24
= .... =

(−1)nc2
n!(n+ 1)!22n

,



112 CHAPTER 6. POWER SERIES METHODS

for all n ≥ 1. The final form of y2 is

y2(x) = x−1

∞∑
n=0

cnx
n = x−1

∞∑
n=1

c2nx
2n = x

∞∑
n=1

c2nx
2n−2 =

= x
∑
n=0

c∞2n+2x
2n = c2x

∞∑
n=0

(−1)nx2n

n!(n+ 1)!22n
= 2c2J2(x).

This shows both parts (a) and (b) of the problem.

In general the equation

(6.11) x2y′′ + xp(x)y′ + q(x)y = 0

has a second solution which is described by the next theorem:

Theorem 6.2.1. [ The Exceptional Case] Assume x = 0 is a regular singular
point for (6.11) and r1 ≥ r2 are the two roots of r2 + (p0 − 1)r + q0 = 0.

(a) If r1 = r2 then the equation (6.11) has two linearly independent solutions
of the form:

y1(x) = xr1

∞∑
n=0

anx
n, (a0 ̸= 0),

y2(x) = y1(x) lnx+ xr1+1

∞∑
n=0

bnx
n.

(b) If r1 − r2 = N with N ∈ N, then the equation (6.11) has two linearly
independent solutions of the form:

y1(x) = xr1

∞∑
n=0

anx
n, (a0 ̸= 0),

y2(x) = Cy1(x) lnx+ xr2

∞∑
n=0

bnx
n.

Homework:

Section 8.3, page 535, Problems 1-31, 35, 38 and 39.

Section 8.4, pages 551-552, Problems 1-8, 18, and 21.



Chapter 7

Fourier Series

7.1 Lecture XXI

Quotation: “Even fairly good students, when they have obtained the
solution of the problem and written down neatly the argument, shut their
books and look for something else. Doing so, they miss an important and
instructive phase of the work. ... A good teacher should understand and
impress on his students the view that no problem whatever is completely
exhausted. ” George Pólya

7.1.1 Fourier series, definition and examples

Another type of expansions for functions that can be helpful in computing solutions
of differential equations is the Fourier series expansion. The method of using a differ-
ent type of expantion works basically the same way as with power series: substitute
in the given differential equation, find a recurrence for the coefficients and then use
that to determine the coefficients and the function if possible. In general a function
that has a Fourier expansion will have to be periodic. So, it is natural to work with
periodic functions defined on R and we will take for simplicity the period to be 2π.

Definition 7.1.1. Assume f is a piecewise continuous function of period 2π defined
on R. The Fourier series of f is

(7.1)
a0
2

+
∞∑
n=1

(an cosnt+ bn sinnt).

where an = 1
π

∫ π

−π
f(t) cosntdt for n = 0, 1, 2, 3, ... and bn = 1

π

∫ π

−π
f(t) sinntdt for

n = 1, 2, 3, ... are called the Fourier coefficients.

113
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Let us see an example. Suppose we take Example 21, page 580. The function
is f(t) = t2 for t ∈ [−π, π]. Then the Fourier coefficients of f are a0 =

1
π

∫ π

−π
t2dt =

2π3

3π
= 2π2

3
,

an =
1

π

∫ π

−π

f(t) cosntdt =
1

π

(
t2
sinnt

n
|π−π + 2t

cosnt

n2
|π−π + 2

sinnt

n3
|π−π

)
= 4(−1)n

n2 ,

for n = 1, 2, 3, ... and

bn =
1

π

∫ π

−π

f(t) sinntdt =
1

π

(
−t2

cosnt

n
|π−π + 2t

sinnt

n2
|π−π + 2

cosnt

n3
|π−π

)
= 0,

for n = 1, 2, 3, .... We will see later that this gives the following formula

(7.2) t2 =
π2

3
+

∞∑
n=1

cos 2nt

n2
− 4

∞∑
n=0

cos(2n+ 1)t

(2n+ 1)2
,

which we will call the Fourier series expansion of f . We have to assign a meaning to
the series in (7.2). As usual, we will understand by it the limit of the partial sums.
If one plots the partial sums of (7.2) against t → t2 (in our plot on [−3π, 3π] and
taking only five terms in each sum) will get

Figure 1

This suggests that the series converges to actually the given function. This
usually is the case if the function is more than continuous (not true for continuous
functions only) and the convergence is uniform if the function has a derivative which
is piecewise continuous.

Theorem 7.1.2. [Dirichlet] Suppose f is a periodic function of period 2π which
is piecewise differentiable. The Fourier series converges

(a) to the value of f(t) for every value t where f is continuous;

(b) to the value 1
2
(f(t+ 0) + f(t− 0)) at each point of discontinuity
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Let us take an example where the function is discontinuous. We consider the
function

g(t) =


−1 for t ∈ (−π, 0)

1 for t ∈ [0, π]

extended by periodicity for all real axis. Then an = 0 for all n = 0, 1, 2, 3, 4, ... and
bn = 2

π

∫ π

0
sinntdt = 2(1−(−1)n)

nπ
for all n = 1, 2, 3, 4, ....

Then g(t) =
4

π

∞∑
n=0

sin(2n+ 1)t

2n+ 1
for all t ∈ (−π, π]{0}. We can see that the part

(b) of the Theorem 7.1.2 is satisfied. By taking t = π
2
, we observe that this is a

point of continuity for g and g(π
2
) = 1 and hence the Theorem 7.1.2 implies that

1 = 4
π

∑∞
n=0

(−1)n

2n+1
or

(7.3)
π

4
=

∞∑
n=0

(−1)n

2n+ 1
.

One of the important formulae that one needs in the calculation of the Fourier
coefficients is given in Problem 22, page 587: show that if p(t) is a polynomial of
degree n, and g is a continuous function,

(7.4)

∫
p(t)g(t)dt = p(t)G1(t)− p′(t)G2(t) + ...+ (−1)np(n)(t)Gn+1(t) + C

where Gk+1 is the antiderivative of Gk for all k = 0, 1, ..., n and G0 = g.

This can be checked by differentiation:

d
dt
(p(t)G1(t)− p′(t)G2(t) + ...+ (−1)np(n)(t)Gn+1(t)) =

p′(t)G1(t)− p′′(t)G2(t) + ...+ (−1)np(n+1)(t)Gn+1(t)+

p(t)g(t)− p′(t)G1(t) + ...+ (−1)np(n)(t)Gn(t) = p(t)g(t).

7.2 General Fourier Series

In general if we have a function which is periodic of period 2L then we can still
expand it in terms of trigonometric functions but we need to change the period.
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Definition 7.2.1. If f is a piecewise continuous function of period 2L then the
Fourier series of f is

(7.5)
a0
2

+
∞∑
n=1

(an cos
nπt

L
+ bn sin

nπt

L
).

where an = 1
L

∫ L

−L
f(t) cos nπt

L
dt for n = 0, 1, 2, 3, ... and bn = 1

π

∫ L

−L
f(t) sin nπt

L
dt for

n = 1, 2, 3, ... are called the Fourier coefficients of f on [0, 2L].

A similar theorem to Theorem 7.1.2 takes place in the case of periodic functions
of period 2L (L > 0). Let us look at the Problem 17, page 587. The function f is
periodic of period 2 and defined by f(t) = t for t ∈ (0, 2). We want to show that

(7.6) f(t) = 1− 2

π

∞∑
n=1

sinnπt

n
.

In this cases L = 1. Let us compute first a0 =
∫ 2

0
tdt = t2

2
|20 = 2. For n ≥ 1 we

have an =
∫ 2

0
t cosnπtdt. Using formula (7.4) we get

an = t
sinnπt

nπ
|20 +

cosnπt

n2π2
|20 = 0.

For n ≥ 1 we have bn =
∫ 2

0
t sinnπtdt. Similarly we get

bn = −t
cosnπt

nπ
|20 +

sinnπt

n2π2
|20 = − 2

nπ
,

and so (7.6) takes place. Substituting t = 1/2 in (7.6) will give

π

4
=
∑
n=0

(−1)n

2n+ 1

which is nothing but the Leibniz’s identity (series) (7.3).

From formula (7.2) let us derive another important series that is so common
in mathematics. Denote by x the sum of the series

∑∞
n=1

1
n2 .

Substituting t = π in (7.2) we get π2 = π2

3
+ 4x which will give x = π2

6
. Therefore

∞∑
n=1

1

n2
=

π2

6
,
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a formula discovered by Euler. Euler and Leibnitz identities seem to be such curious
facts in mathematics since they relate all the whole numbers with the number π.

Homework:

Section 9.1, page 580, Problems 1-31.

Section 9.2, pages 586-587, Problems 1-25.
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Chapter 8

Miscellaneous Problems

This is a collection of problems that will help the reader to acquire an appreciation
for differential equations:

Problem 1: Let u be a differentiable function defined on R such that

(8.1)
du

dt
= au(t)− bu(t)2 + h(t)

where h is continuous and periodic of period T on R. Show that there are at most
two T -periodic solutions of (8.1). Also, show that if there are two, they do not
intersect.

119
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