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Preface

These lecture notes are written over a few years, beginning with the summer semester
of 2007 for my students enrolled in a Number Theory course (R. Foley, M. Huckaby,
S. Kwon, L. Storm, S. Meredith, S. Thrasher, and A. Markov) and continued in
the summer of 2011 (students: E. Driver, M. Redmond, J. Patterson, Y. Robinson
and R. Roop-Eckart). There are so many books on number theory and some are
technically available to everyone in pdf format on the web. Each one of them, in
a sense, is the author(s) perspective of the subject and preference of the topics of
interest. We make no exception in these notes. It is sometimes a help for the student
who likes to inform himself/herself, to have the possibility of reading a topic from a
different perspective so that that particular material will have a better chance “to
sink”. We made a list of the books that we had the chance to consult and point out
which one of these is freely accessible on the web.

There are lots of topics that usually go into an introductory course in number
theory depending on the scope of the course and the background of the students.
Our scope is to bring the students to a point where he/she may be interested in
asking and solving open questions in this field. As a result, no matter what a
particular topic goes in, we would like to pursue it, as much as possible, to show the
connections that can be made and go toward other developments in the field.

There is also an opportunity in this course to go through lots of techniques of
proofs in mathematics. We are also interested in using the power of the computer
in the study and learning of number theory.

Another characteristic in our approach is the pursuit of the spectacular in the
area called by Carl Friedrich Gauss “the queen of mathematics”. One must give
Gauss a considerable amount of credit here. Paranthetically, in 1796 at the age of
nineteen, Gauss decided to dedicate his life to mathematics after he has shown how
a regular polygon of seventeen sides can be constructed with a straight edge and a
collapsible compass.

We end this preface with two examples of such striking facts in number the-
ory whose statements are nevertheless easy enough to understand. The first is an

vii
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exercise that we learned of it from [19] (page 33):

232 + 1 = (29 + 27 + 1)(223 − 221 + 219 − 217 + 214 − 29 − 27 + 1)

which, for convincing one of its validity, it requires just a little algebra. Interesting
enough is the fact that it shows that 22

n
+ 1 is not a prime number for all n ∈ N

(as Fermat predicted and allowed Euler’s to show off with his calculational powers
by giving this counterexample).

The second is a theorem of Hurwitz from 1891 for which we give as a reference
[3], a book connecting number theory with ergodic theory:

Theorem 0.0.1. For every irrational number x there exist infinitely many pairs of
integers p and q, such that

|x− p

q
| ≤ 1√

5q2
.

The constant 1√
5
is the best possible in the sense that if we replace it by something

smaller, say C > 0, then there are infinitely many irrationals x, for which only
finitely many pairs of integers p and q satisfy

|x− p

q
| ≤ C

q2
.

Finally, number theory abounds in old and new conjectures but one can come
up easily with his own. A good reference for lots and lots of interesting and dramatic
conjectures or facts in this area is [10]. One of the million-dollar conjectures or
millennium problems is at the intersection of number theory and complex analysis.
It is known as the Riemann Hypothesis. A reformulation of it is to show that ([8]
and [11])

|
∫ x

1

1

ln t
dt−#{p|p is prime such that p ≤ x}| ≤

√
x lnx, for x ≥ 3.

Let us conclude with the observation that the topics of number theory are basically
at the heart and very good introductions to other, more abstract and technical,
branches of mathematics.
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Figure 1: Arnold 102

Figure 2: University Hall 025
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Figure 3: University Hall 345
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Chapter 1

Some Basics about the objects of
study

Quotation: “ The development of mathematics toward greater preci-
sion has led, as is well known, to the formalization of large tracts of it,
so that one can prove any theorem using nothing but a few mechanical
rules... One might therefore conjecture that these axioms and rules of
inference are sufficient to decide any mathematical question that can at
all be formally expressed in these systems. It will be shown below that
this is not the case, on the contrary there are in the two systems men-
tioned relatively simple problems in the theory of integers that cannot be
decided based on the axioms.” ( Kurt Gödel)

1.1 Natural numbers and rings

We are going to use the following classical notations for the various sets of real num-
bers R: the natural numbers N := {1, 2, 3, ...}, the integers Z := {...,−3,−2,−1, 0, 1, 2, 3, ...},
and rationals Q := {a

b
: a ∈ Z, b ∈ N}. We assume the operations of addition and

multiplication on N are well-defined and have the well-known properties (see the
Peano’s axiomatic model for the construction of N): for every a, b, c in N, we have

a+ b = b+ a, ab = ba ♢ commutative property,

(a+ b) + c = a+ (b+ c), (ab)c = a(bc) ♡-associative property,

5
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a(b+ c) = ab+ ac ♣-distributivity of multiplication with respect to addition,

1(a) = a ♠-1 is the multiplicative identity .

The order on N is defined as usual: we say that a < b if b = a + c for some c ∈ N.
Also, we also assume the Principle of Mathematical Induction and the Well Ordering
Principle of N. These operations can be extended to Z and obtain, what is usually
called a commutative ring with unity. All properties above are preserved (with the
specific changes in terms of PMI and WOP-every set of integers bounded from below
has a least element). The only two elements in Z that have an inverse with respect
to multiplication are ±1 (these will be called units).

Let us introduce another useful ring which it will help put some concepts in
perspective, that is the ring of Gaussian integers: Z[i] := {a + bi|a, b ∈ Z}. The
addition here is done on components, i.e. (a+bi)+(c+di) = (a+c)+(b+d)i, and the
multiplication is as usual as complex numbers: (a+bi)(c+di) = (ac−bd)+(ad−bd)i.
All properties above are preserved, so we get a commutative ring with unity, but we
do not have a well defined order and we do not have a PMI. It is easy to see that
the only units here are {±1,±i}. The set of units in a ring with unity R, will be
denoted by UR, so UZ = {1.− 1} and UZ[i] = {1,−1, i,−i}.

Let us make the observation that while for Z, the equation |m| = |n| implies
m = ±n, for Gaussian integers it is not true that |z| = |w| implies z = uw for some
u ∈ {1,−1, i,−i}. For instance, |z| = |w| =

√
65 if z = 8 + i and w = 4 + 7i but

zu ̸= w for any u ∈ {1,−1, i,−i}.

Definition 1.1.1. For a and b in N, we say that a divides b (written a|b), or b is

divisible by a (written b
...a), if there exists c ∈ N such that b = ac. In this case, a is

called a divisor of b.

Examples: Clearly, 1 is a divisor of every natural number and n|n for every n ∈ N.
We have 63|2016, since 2016 = 63(32). The set of all divisors of 2016 is

{1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 32, 36, 42, 48, 56,

63, 72, 84, 96, 112, 126, 144, 168, 224, 252, 288, 336, 504, 672, 1008, 2016}

The set of all divisors of {2017} is {1, 2017}. A number p > 1, p ∈ N is called
a prime, if the only divisors of p are 1 and p. So, 2017 is a prime. The greatest
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known prime, 274,207,281−1, was just recently discovered. We are going to show that
the set of primes is infinite.

If in the Definition 1.1.1, we change N with Z, we get the concept of divisibility
in within the integers. As a result we can say, for instance that the set of integer
divisors of 16 is {±1,±2,±4,±8,±16}. If in the Definition 1.1.1, we change N
with Z[i], we get the concept of divisibility in within the Gaussian Integers. Let us
look at two examples here. We have 44 + 9i is a divisor of 2017, because 2017 =
1936 + 81 = 442 + 92 = (44 + 9i)(44 − 9i). Or, 2 + 3i is a divisor of −1 + 5i since
−1 + 5i = (2 + 3i)(1 + i).

One of the important functions in number theory, the divisor function, is de-
noted by d, d : N → N, and it is defined by d(n) is the number of positive divisors of
n ∈ N. For instance, we have seen that d(16) = 5 and d(2016) = 36. (Johann Peter
Gustav Lejeune) Dirichlet (1805-1859) has shown that the average of the divisor
function, i.e.

1

n

n∑
k=1

d(k) ≈ lnn+ 2γ − 1,

where γ = limn→∞(− ln
∑n

k=1
1
k
) ≈ 0.5772156649 is the Euler-Mascheroni constant.

1.2 Division Algorithm

The order we defined earlier is in fact the usual order on the real numbers R. As a
result, due to the WOP on the integers, we can define the following function called
the integer part.

Definition 1.2.1. Given a real number x, by ⌊x⌋, we understand the greatest integer
k such that k ≤ x.

Let us show that for every real number x, we have

(1.1) ⌊x⌋ ≤ x < ⌊x⌋+ 1.

Let us say that ⌊x⌋ = k. We want to show that k ≤ x < k + 1. By definition,
we must have k ≤ x. By way of contradiction, let us assume that x < k + 1 is not
true. In other words k + 1 ≤ x. Since k + 1 is an integer less than or equal to x,
by definition of k as being the greatest with this property, we must have k ≥ k + 1.
But this leads to the contradiction 0 ≥ 1.

The function x → x−⌊x⌋ is usually called the fractional part and it is denoted
by {·}, i.e. {x} = x− ⌊x⌋ which is a number in [0, 1) for every x ∈ R.
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Theorem 1.2.2. [Division Algorithm for Integers] Given a nonzero positive
integer n (n ∈ N) and an integer k, then there exists two (unique) integers q and r,
r ∈ {0, 1, 2, ..., n− 1}, such that k = nq + r.

The number q is called quotient and the number r is called the remainder.
Let us use a direct proof of this theorem.

(Existence) Assume that the hypothesis is true. In other words, we have an integer
k and positive natural number n. To prove the conclusion we need to show the
existence of q and r satisfying the required conditions. We define q = ⌊ k

n
⌋ (greatest

integer function defined earlier) and r = k − nq. We observe that x = k
n
is a

well defined real number since n is not zero. Next, all we need to show is that
r ∈ {0, 1, 2, ..., n − 1} or 0 ≤ r < n. Because we have proved in (1.1) that ⌊x⌋ ≤
x < ⌊x⌋ + 1, we have ⌊ k

n
⌋ ≤ k

n
< ⌊ k

n
⌋ + 1. This can be written as q ≤ k

n
< q + 1 or

0 ≤ r < n, which is exactly what we wanted.

(Uniqueness) By way of contradiction, suppose that we have two distinct writings,
k = nq1+r1 and k = nq2+r2 with r1, r2 ∈ {0, 1, 2, ..., n−1}. We may assume, without
loss of generality, that q1 ̸= q2. Indeed, if q1 = q2 then r1 = k − nq1 = k − nq2 = r2
and so we have the same writing, but we assumed these writings were distinct. Since
|q1 − q2| is a positive integer, it must by at least 1. Then n(q1 − q2) = r2 − r1 which
implies |r2 − r1| = n|q1 − q2| ≥ n(1) = n. Suppose, without loss of generality, that
r1 ≥ r2. Then n ≤ r1 − r2 ≤ r1 < n, which leads to the contradiction n < n. It
remains that the two writings must be the same and the uniqueness in Theorem 1.2.2
is shown.

The set {0, 1, 2, ..., n − 1} is usually called a complete set of residues modulo
n (CRS). In general, a CRS is just a set R of n integers with the property that for
every i ∈ {0, 1, 2, ..., n − 1}, there exists a unique r ∈ R such that r − i is divisible
by n. We observe that any set of the form

{r|r = i+ nki for some i = 0, 1, 2, ...n− 1, and ki ∈ Z}

is a CRS modulo n. Another very common one is the following

RSn := {r|r = i if 0 ≤ i < n/2 or r = i− n if n/2 ≤ i < n}.

For a complex number z = a+ bi, we review some of the customary notation:
z = a− bi, |z| =

√
zz =

√
a2 + b2 and Re(z) = a, Im(z) = b. It is very common in

the algebraic number theory to denote N(z) = |z|2 = a2 + b2.

Theorem 1.2.3. [Division Algorithm for Gaussian Integers (Version 1)]
Given a nonzero z (z ∈ Z[i]) and a Gaussian integer w, then there exists two



1.2. DIVISION ALGORITHM 9

(unique) Gaussian integers q and r, such that w = qz + r where r satisfies

(1.2) 0 ≤ Re(rz) < |z|2, 0 ≤ Im(rz) < |z|2.

PROOF. (Existence) We represent w in the orthonormal base {z, iz}: w =
αz+β(iz), for some real numbers α and β. This is basically equivalent to calculating
w
z

= α + βi as a complex number. We take q = ⌊α⌋ + ⌊β⌋i. Then, we simply
define r = w − zq. Let us observe first that q and r are Gausssian integers. Since
w
z
= α+βi = q+ s where s = {α}+ {β}i, by our definitions r = ({α}+ {β}i)z. So,

wee need to show that the two equalities in (1.2) are valid. But rz = ({α}+{β}i)|z|2,
which imply that 0 ≤ Re(rz) = {α}|z|2 < |z|2 and 0 ≤ Im(rz) = {β}|z|2 < |z|2.
Hence (1.2) is valid.

(Uniqueness) By way of contradiction, if we have two different writings w =
q1z + r1 = q2z + r2 with r1 and r2 satisfying (1.2), then

0 ≤ Re(r1z) < |z|2, 0 ≤ Im(r1z) < |z|2, and

0 ≤ Re(r2z) < |z|2, 0 ≤ Im(r2z) < |z|2.

Clearly if q1 = q2, then r1 = r2 which contradicts the assumption that we start with
two different writings. So, we may assume that q1 ̸= q2.

This implies that |Re(r1z) −Re(r2z)| < |z|2 and |Im(r1z) − Im(r2z)| < |z|2. But
0 = (q1 − q2)z + (r1 − r2) which implies that (r1 − r2)z = (q2 − q1)|z|2. Therefore,
|Re(q2−q1)|z|2| < |z|2 and |Im(q2−q1)|z|2| < |z|2. This implies that |Re(q2−q1)| <
1 and |Im(q2 − q1) < 1. These two inequalities can be satisfied only if q1 = q2 and
this a contradiction.

Theorem 1.2.4. [Division Algorithm for Z[i] (Version 2)] Given a nonzero
z (z ∈ Z[i]) and a Gaussian integer w, then there exists two (unique) Gaussian
integers q and r, such that w = qz + r where r satisfies |r| < |z| and in addition,
either

(1.3) 0 ≤ Re(rz) < |z|2, 0 ≤ Im(rz) < |z|2 or

(1.4) −|z|2 ≤ Re(rz) < 0, −|z|2 ≤ Im(rz) < 0 with |r + z(1 + i)| ≥ |z|.

PROOF. (Existence) We construct r first as in the Theorem 1.2.3. Let
us denote the set of all r′s that satisfy (1.2) by R. We have two disjoint possibilities
for each r ∈ R: either |r| < |z| or |z| ≥ |z|. So, we can write R = R1 +R2 where
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6

4

2

-2

-4

-6

-5 5

2+3i

Figure 1.1: Residues modulo z = 2 + 3i

R1 := {r ∈ R||r| < |z|} and R2 := {r ∈ R||r| ≥ |z|} (see Figure 1.1). We are going
to replace every r̃ ∈ R2 by r := r̃ − z(1 + i). So, we define

R′
2 = {r|r = r̃ − z(1 + i) for some r̃ ∈ R2}.

For every r ∈ R′
2 we need to change the corresponding q. Because we know that for

some q̃ ∈ Z[i] we have

w = q̃z + r̃ = q̃z + r + (1 + i)z = (q̃ + 1 + i)z + r,

we need to take q := q̃ + 1 + i. Let us observe that for r ∈ R′
2 we have Re(rz) =

Re(r̃z) − |z|2 which satisfies −|z|2 ≤ Re(rz) < 0 and similarly we have the same
observation for Im. Also, since r+(1+ i)z = r̃ and by the definition of R2 we must
have |r̃| = |r + (1 + i)z| ≥ |z|. This means that the values in R′

2 satisfy (1.4). For
those r ∈ R′

2 we need to show that |r| < |z|. From the previous proof

r = r̃ − z(1 + i) = [({α} − 1) + ({β} − 1)i]z.

Hence we have to show that ({α} − 1)2 + ({β} − 1)2 < 1. Because r̃ ∈ R2 we have
|r̃| ≥ |z| or {α}2 + {β}2 ≥ 1. From here we see that {α}+ {β} > {α}2 + {β}2 ≥ 1
with the observation that the first inequality is a strict one because {α}, {β} ∈ [0, 1).
Hence, {α}+ {β} > 1 and then

({α} − 1)2 + ({β − 1})2 ≤ (1− {α}) + (1− {β}) < 1.

This shows the existence of an q and r in Z[i] satisfying the requirements of the
theorem.

(Uniqueness) To show that the writing is unique, we reduce the problem to the
uniqueness already shown in Theorem 1.2.3. By way of contradiction if we have two
writings w = q1z + r1 = q2z + r2 with r1 and r2 satisfying (1.3) or (1.4). We have
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2
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2+3i

12

10
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6

4
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7+2i

Figure 1.2: Residues modulo z = 2+3i and z = 7+2i with the property |r| ≤ 1√
2
|z|

either r1, r2 both satisfying (1.3) in which case we know that r1 = r2 and q1 = q2. If
r1, r2 both satisfy (1.4), the proof follows the same arguments as in Theorem 1.2.3.
Let us observe that we cannot have, for instance r1 satisfying (1.3) and r2 satisfying
(1.4). Indeed, assuming this is possible, this implies that r := r2 + (1 + z)i satisfies
(1.3) and by uniqueness shown in Theorem 1.2.3, we must have r1 = r2+(1+z)i and
of course q1 = q2 − (1 + i)z. But this is not possible since we get the contradiction
|z| > |r1| = |r2 + (1 + z)i| ≥ |z|.

In Figure 1.1, we have shown a complete set of residues modulo z = 2 + 3i:

Rz = {−2 + 2i,−1 + i,−1 + 2i,−1 + 3i, 0, i, 2i, 3i, 1 + 2i, 1 + 3i,−1− 2i,−i, 1− i}
constructed as in the proof of Theorem 1.2.4.

We will show that the cardinality of a complete set of residues modulo z is
precisely |z|2. Let us observe that Theorem 1.2.3 can be made stronger in the
following way.

Theorem 1.2.5. [Division Algorithm for Z[i] (Version 3)] Given a nonzero z
(z ∈ Z[i]) and a Gaussian integer w, then there exists two unique Gaussian integers
q and r, such that w = qz + r where r satisfies |r| ≤ 1√

2
|z| and

(1.5) −1

2
|z|2 ≤ Re(rz) <

1

2
|z|2, 1

2
|z|2 ≤ Im(rz) <

1

2
|z|2

The proof of this theorem is similar to what we have done earlier and it is left
to the reader. The idea of proof is basically described in Figure 1.2

where the regionR is divided into four smaller squares. Three of them are translated
with −z, −iz or −(1 + i)z respectively. The (CSR) is very symmetric in this case:

RSz = {0} ∪
⋃

u∈U(Z[i])

{u, 2u, (1 + i)u}.
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Let us denote by RSz this (CSR) in general, which is the equivalent of RSn in Z.

Definition 1.2.6. A Gaussian number z is a prime if it is not a unit, and z = xy
with x, y ∈ Z[i] implies either x or y is a unit.

Comment: In general, this definition and the similar one we had for N, is the
definition that one has for so called irreducible elements. The definition of a prime
instead, in general, is an element p with the property that p|ab implies p|a or p|b.
We will show that this is a property that takes place in Z and Z[i].

Proposition 1.2.7. The norm N : Z[i] → N is multiplicative, i.e., N(zw) =
N(z)N(w) for all z, w ∈ Z[i], where N(z) = N(a+bi) = a2+b2 for z = a+bi ∈ Z[i].

PROOF If z = a+ bi and w = c+ di we have zw = (ac− bd) + (ad+ bc)i.
Hence, the identity we want to show is (ac− bd)2 + (ad+ bc)2 = (a2 + b2)(c2 + d2).
This identity is usually called the Lagrange’s identity and it can be checked by usual
algebra manipulations.

We can show that for instance z = 1 + i is a prime. Indeed, if z = xy, then
by Proposition 1.2.7, N(z) = 2 = N(x)N(y). This implies N(x) or N(y) = 1, so x
or y is a unit. For the same reason, we can think of a lot of other Gaussian primes:
1 + 2i, 2 + 3i, etc. We will show that every prime p in N, of the form p = 4k + 3,
k ∈ Z, is also a prime in Z[i].

Proposition 1.2.8. We have the following properties of the divisibility:

(1) for every n ∈ Z, we have 1|n and n|n;
(2) for every a, b, d, α, β ∈ Z, if d|a and d|b then have d|αa+ βb;

(3) if d is a divisor of a, n ∈ Z \ {0}, then d ≤ |a|.

For two numbers a, b ∈ N we have 1 as a common divisor and any common
divisor d must be at most as big as min(a, b).

Definition 1.2.9. Given two integers a and b not both equal to zero, the biggest
number that divides both a and b is called the greatest common divisor of a and
b and it is denoted by gcd(a, b).

For instance gcd(141, 235) = 47 since 47 divides both numbers, 141 = 47(3)
and 235 = 47(5), and since 141(2) − 235 = 47 we see that any number d dividing
both 141 and 235 must be a divisor of 141(2) − 235 so a divisor of 47. Hence 47
is the biggest divisor. This idea works in general, and the procedure is called the
Euclidean Algorithm. In The Elements, Euclid included this algorithm to calculate
the greatest common divisor of two numbers.
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Let us start with an example. We let a = 22099 and b = 4223. One can check
the following calculations based on the Division Algorithm:

a = 5b+ 984, let’s define r1 = 984
b = 4(984) + 287, let’s define r2 = 287
r1 = 3(287) + 123, define r3 = 123

r2 = 2(123) + 41, define r4 = 41
r3 = 3(41) + 0, r5 = 0.

We observe that the sequence of remainders, r1, r2, ... satisfies

b > r1 > r2 > r3 > r4 > r5 = 0.

With a moment of thought, working our way backwards with these equalities, using
the same argument as in showing that gcd(141, 235) = 47, we conclude that 41 =
gcd(r3, r2) = gcd(a, b) = 41. Let us record this as a general statement and point out
to the essential steps in its proof.

Theorem 1.2.10. We let a and b be two integers with b different of zero. Then
there exists a finite sequence of equalities rj = qjrj+1 + rj+2 with r−1 = a, r0 = |b|,
j = −1, 0, 1, ..., k − 1 such that

(1) qi ∈ Z,

(2) |b| > rj > rj+1 ≥ 0 for j = 1, ..., k and

(3) rk+1 = 0,

(4) gcd(a, b) = rk.

(Bézout Lemma) In addition, there exists x, y ∈ Z such that ax+ by = rk.

PROOF. We obtain all these equalities from the Division Algorithm. First
we divide a by |b| and get a = q−1|b| + r1 with r1 ∈ {0, 1, ..., |b| − 1}. Since the
sequence rj is strictly decreasing and is bounded below by 0, we need to have only
finitely many rj’s until we reach zero. We let rk+1 = 0. Then rk > 0 divides rk−1

and because we have rk−2 = rk−1qk−2 + rk = rkqk−1qk−2 + rk = rk(qk−1qk−2 + 1) we
see that rk divides rk−2 too. In fact, we have rk = gcd(rk−1, rk−2). This equality
spreads all the way to rk = gcd(a, b) using an induction on j = k − 1, k − 2, ...,−1.
The second part of the theorem is obtained by eliminating the variables rj all the
way to a and b.

For instance, for our example before 41 = 287−2(123) = 287−2[984−3(284)] =
287(7) − 2(984) = [b − 4(984)]7 − 2(984) = 7b − 30(984) = 7b − 30(a − 5b) which
implies 41 = 157b− 30a.
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1.3 Euclidean Algorithm and The greatest com-

mon divisor in Z[i]

If a, b ∈ Z[i] and a|b, then N(a)|N(b), the the set of divisors of a non-zero Gaussian
integer is finite. We observe that for integers, the greatest common divisor has the
property that any other common divisor must divide it. We will take this property
as the definition of the greatest common divisor for Gaussian integers.

Definition 1.3.1. Given two Gaussian integers a and b not both equal to zero, a
common divisor d that has the property that any other common divisor divides it, it
is called a greatest common divisor of a and b and it is denoted by gcd(a, b).

The Euclidean algorithm in the case of Gausssian integers is basically following
the same pattern as in the case of integers. It is showing that the gcd(a, b) exists.
Next, let us make the observation that this concept is defined up to a unit. Indeed,
if d′ is another greatest common divisor, the by definition d′|d and d|d′. Hence, d/d
is a Gausssian integer of norm 1, so it must be a unit. So, we are going to use the
terminology the greatest common divisor knowingly it is unique up to the four units
of Z[i].

The following Maple code is implementing the Division Algorithm in Theo-
rem 1.2.5:

DivAlg:=proc(w,z)

local i,u,a,b,aa,bb,aaa,bbb,q,r;

u:=w ∗ conjugate(z)/abs(z)2;
a:=Re(u);b:=Im(u);aa:=floor(a);bb:=floor(b);aaa:=a-aa;bbb:=b-
bb;

if aaa < 1/2 and bbb < 1/2 then q:=aa+bb*I; r:=w-z*q;fi;

if aaa ≥ 1/2 and bbb < 1/2 then q:=(aa+1)+bb*I; r:=w-z*q;fi;

if aaa < 1/2 and bbb ≥ 1/2 then q:=aa+(bb+1)*I; r:=w-z*q;fi;

if aaa ≥ 1/2 and bbb ≥ 1/2 then q:=(aa+1)+(bb+1)*I; r:=w-
z*q;fi;

[q,r];

end:

Let us look at an example. The same method we used in the case of integers can be
used here to determine the greatest common divisor of the following two Gaussian
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integers: a = 2016 + 2017i and b = 118 + 81i. We used the Division Algorithm in
Theorem 1.2.5 and the Maple program above to help with the computations. One
can check that

a = (20+4i)b−20−75i, b = (20+75i)(1−i)+23+26i, and 20+75i = (23+26i)(2+i).

As we have seen before, we can say that gcd(a, b) = 23 + 26i. Let us record at this
point the result that is usually known as Bezout’s Lemma:

Lemma 1.3.2. (Bézout Lemma) Given two integers of Gaussian integers a and
b then there exists x, y integers or Gaussian integers such that gcd(a, b) = ax+ by.

We say that two integers a and b are relatively prime or coprime if gcd(a, b) = 1.
The same definition applies to Gaussian integers.

Proposition 1.3.3. (Euclid′s Lemma) If a and b are relatively prime, and a|bc
then a|c.

PROOF. By Bézout Lemma, we have ax + by = 1 for some integers x and y.
Then, if we multiply this by c, we get acx+ bcy = c. Because a|bc, we have bc = aα
for some α ∈ Z. Hence,

c = acx+ bcy = acx+ aαy = a(cx+ αy),

which shows that a|c.

Corollary 1.3.4. (1) Given a and b are relatively prime, if a|c and b|c, then ab|c.
(2) If p is a prime and p|ab, then p|a or p|b.

PROOF. (1) Since a|c and b|c we can write c = aα = bβ for some integers α and
β. Hence, aα = bβ implies that a divides bβ. By Euclid′s Lemma, a must divides
β, and so β = aγ for some integer γ. Therefore, c = bβ = baγ which implies ab|c.

(2) If p is a prime and p is not a divisor of a, then gcd(p, a) = 1. Hence, by
Euclid′s Lemma, p|b.

The similar statements and proofs for Gaussian integers are left as an exercise.
Let us use these results to find a decomposition of w = 7+6i as a product of primes in
Z[i]. Since N(w) = (7+6i)(7−6i) = 72+62 = 49+36 = 85 = 5(17) = (2+i)(2−i)17
we see that the prime 2+i divides 7+6i or 7−6i. It is easy to check that (2+i)|(7+6i)
and 7 + 6i = (2 + i)(4 + i). Since 4 + i is also a Gaussian prime, we have found a
decomposition of w = 7+6i as a product of primes in Z[i]. In a similar way we can
find the following decomposition for 2016 + 2017i:

2016 + 2017i = (−1)(1 + 2i)(4 + i)(4 + 15i)(6 + 19i).
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Let us observe that we can define an order on the Gaussian primes, as suggested
in these decompositions, which will allow to obtain a similar result as in the case of
N.

Theorem 1.3.5. (Fundamental Theorem of Arithmetic) Every natural num-
ber n > 1 can be written in a unique way as a product of primes p1p2...pk where
p1 ≤ p2 ≤ p3 ≤ · · · ≤ pk, with k ∈ N.

PROOF. Existence: We proceed by Strong Induction on n. For n = 2,
the statements is true since p1 = 2 is a prime. Assume that we can find such
decompositions for every k ≤ n, with n ≥ 2. Then n+ 1 is either a prime, in which
case we have a decomposition, or it is composite. If it is composite n+ 1 = ab with
a, b ∈ N, and a > 1, b > 1. This shows that a ≤ n and b ≤ n (a ≥ n + 1 implies
n+1 = ab > (n+1)(1), a contradiction). Therefore, by the induction hypothesis, a
and b can be written as a product of primes. Putting all these primes together in a
non-increasing list, gives the decomposition of n+ 1 as required. Therefore, by the
PMI we have the statement true for all n > 1.

Uniqueness: Let us proceed by Strong Induction on n, again. For the basic
step, n = 2 if 2 = p1...pk then since 2 is a prime 2|pj form some j. This is possible
only if pj = 2. Hence, p1 = pj and then after simplifying by 2 we get 1 = p2...pk.
Automatically, we observe that this is not possible if k > 1. It remains that k = 1
and p1 = 2 in other words the writing is unique. Assume that the uniqueness is
valid for all 2 ≤ k ≤ n, with n ≥ 2. Let us say we have two writings for n+ 1:

n+ 1 = p1p2...pk = q1q2...qs, p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ qs.

As before, p1 divides the product q1q2...qs so by Corollary 1.3.4, then p1 divides
at least one of the qj. This is possible only if it is equal to one of them. Simplifying
the equality by p1 we get (n+ 1)/p1 = p2...pk = q1p2...qs/p1. If (n+ 1)/p1 = 1 then
we proceed as the case n = 2 and arrive at a contradiction if s > 1. In this case
then n + 1 = p1 = q1 and so we have unique writing. Because 1 < (n + 1)/p1 ≤
(n + 1)/2 < n, we can use the induction hypothesis, and conclude that these two
writings must be the same. Therefore, the writings of n+1 must be the same. Thus,
by the PMI we have the statement true for all n > 1.

Let us observe that if p = a + bi is a Gaussian prime, we can look at its
associates ip, −p, and −ip, at least one of these is in the first quadrant. Also,
p = a − bi must be also a Gaussian prime. It is also clear that a ̸= b if a + bi is
prime, unless a = b = ±1. An associate of p = a − bi is ip = b + ai, which shows
that we can always take an associate of a prime in the first quadrant {reit|r ≥ 0, t ∈
[0, π/2)} (polar coordinates), of these primes. We will then list the primes in the
decomposition of a Gaussian number in nondecreasing order of their norm N(p),
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and in the case of the same norm as for primes like p = a + bi, q = c + di with
a2 + b2 = c2 + d2 we just use the order on a and c. For instance, p = 2 + i comes
first and then 1+ 2i if we have something like this occurring. The decomposition of
2, according to this writing is then 2 = −i(1 + i)2.
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Chapter 2

Some Diophantine equations

2.1 Pythagorean Triples

Quotation: “The result of the mathematician’s creative work is demon-
strative reasoning, a proof, but the proof is discovered by plausible rea-
soning, by GUESSING” ( George Polya, [21])

Notions, concepts, definitions, and theorems: Characterization,
co-prime numbers, primitive solution, parametrization

Perhaps one of the first encounters that a student may have had with a number
theory problem comes from a geometry or a trigonometry course. It is about triples
of numbers such as (3, 4, 5) or (5, 12, 13) called Pythagorean triples for the obvious
reason that if a triple like this, say (a, b, c), we take a, b, c (assuming 0 < a ≤ b ≤ c)
to represent the sides of a triangle (measured with a certain but inessential unit)
then the triangle is a right triangle. By the Pythagorean theorem we must have
a2+b2 = c2. This was a discovery believed to be known to the Babilonians (Plimpton
322, 1800 BC) but some recent interpretations of Plimpton 322 point out in other
directions. A rather simple question here is whether or not there are other triples
of positive integers like these. Of course a simple question since we can multiply
any of the two examples above by a positive integer and obtain other Pythagorean
triples such as (6, 8, 10) or (15, 36, 39). But let us impose the condition that such a
triple cannot be simplified by any integer greater than 1. One such triple is called
a primitive one.

One can use an exhaustive search and find that there are only sixteen such
triples with c < 100. These are included in the Table 2.1. Investigating the Table 2.1
we can start making all sorts of conjectures about these triples. First of all, we guess
there are infinitely many.

19
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(3, 4, 5) (9, 40, 41) (16, 63, 65) (36, 77, 85)

(5, 12, 13) (11, 60, 61) (20, 21, 29) (39, 80, 89)
(7, 24, 25) (12, 35, 37) (28, 45, 53) (48, 55, 73)

(8, 15, 17) (13, 84, 85) (33, 56, 65) (65, 72, 97)

Table 2.1: Primitive Pythagorean Triples with the hypothenuse less than 100.

One of the first two numbers in a triple (called legs) is an odd number and
the other is even (in fact divisible by 4). One of the legs is divisible by 3. One of
the numbers in a triple is divisible by 5. There are only two triples with the same
hypothenuse: 652 = 562 + 332 = 162 + 632. There are only two triples in which
one leg is one more than the other. The corresponding triangles are close to be
isosceles and since there are no examples of isosceles ones we may conjecture that
there are no Pythagorean triples with equal legs. There are six examples in which
the hypothenuse is one unit more than a leg. This suggests that there are infinitely
many examples such as these?

Let us pursue this question. If c = b+1 then the equation c2 = a2+b2 becomes
b2+2b+1 = b2+a2 which gives b = a2−1

2
. If we are careful to take a an odd number

then we find plenty (infinitely many) of such triples:

(2.1) (a,
a2 − 1

2
,
a2 − 1

2
+ 1), a ∈ N, a odd, a ≥ 3.

For a = 3, 5, 7, 9, 11, 13 we get all of the above ones. Increasing a past 13 will
give a c = a2+1

2
> 100. The recipe (2.1) was known to the Pythagorean school. Let

us observe that it produces primitive Pythagorean triples (two consecutive integers
are coprime (coprime or relatively prime integers are two integers a and b with the
property that their greatest common divisor is 1).

We are going to show next that every Pythagorean triple has the property that
one of the legs is divisible by 3. Let us denote this triple as before by (a, b, c) with
0 < a ≤ b ≤ c, a, b, c ∈ N. In general, a natural number is of the form 3k, 3k + 1
or 3k − 1 with k ∈ Z. Let us assume by way of contradiction that a and b are not
divisible by 3 so they must be of the form 3k ± 1. This implies

c2 = a2 + b2 = (3k ± 1)2 + (3k′ ± 1)2 = 3(3k2 + 3k′2 ± 2k ± 2k′) + 2

is of the form 3l+2. But no perfect square is of the form 3l+2. This contradiction
shows that we cannot have this case and so it remains that a or b must be divisible
by 3.
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Problem 1 (Homework) Prove that in every Pythagorean triple (a, b, c) at least one
of the numbers a, b, c is divisible by 5.

All the conjectures formulated above are true for all primitive Pythagorean triples.
The reader is invited to prove them all.

Before we find a general parametrization of all primitive Pythagorean triples
let us look also at the case b = a+1. The equation becomes a2+a2+2a+1 = c2 or
2c2− (2a+1)2 = 1. We will see in the last section of this Chapter that this equation
leads to the so called Pell’s equation. We know that there are at least two particular
solutions for this equation: c = 5, a = 4 and c = 29, a = 20. One can check that
the following recurrence gives an infinite sequence of solutions:

an+1 = 3an + 2cn + 1, and cn+1 = 4an + 3cn + 2, c0 = 1, a0 = 0, n ∈ N.

The fact that these formulae generate Pythagorean triples of the form (a, a + 1, c),
reduces to a simple algebra calculation and an induction argument. The first ten
such triples that are generated this way are: (3, 4, 5), (20, 21, 29), (119, 120, 169),
(696, 697, 985), (4059, 4060, 5741), (23660, 23661, 33461), (137903, 137904, 195025),
(803760, 803761, 1136689), (4684659, 4684660, 6625109) and
(27304196, 27304197, 38613965). Is this method generating all of such triples? We
will show that this is indeed the case.

Next, we are going to make another connection with geometry. If we introduce
x = a

c
, y = b

c
we see that x2 + y2 = 1 and x, y ∈ Q. So, any solution of a2 + b2 = c2

gives a point (x, y) on the unit circle with coordinates which are positive rational
values (Figure 2.1). Then the slope of the line connecting this point and the point
of coordinates (−1, 0) is a rational positive number given by m = y

x+1
. This gives

y = m(x+ 1) and so m2(x+ 1)2 + x2 = 1 which gives

(x+ 1)[(m2 + 1)x+m2 − 1] = 0.

Since x is assumed positive we have only the solution x = 1−m2

m2+1
. Then y = 2m

m2+1
.

Notice that if m = u
v
with u, v positive integers such that the fraction m is in its

reduced form we then have

x =
a

c
=

v2 − u2

u2 + v2
and y =

b

c
=

2uv

u2 + v2
.

The fraction v2−u2

u2+v2
could only be simplified by a power of 2. Indeed, if p is an odd

prime that simplifies it, then it must divide their sum which is 2v2 and also it must
divide their difference which is 2u2. Hence p divides u and v. But this is not possible
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(-1,0)

(x,y)

Figure 2.1: Chord idea

by our assumption on u and v. So the only factor that v2−u2

u2+v2
can be simplified by

is 2. The same is true with the fraction 2uv
u2+v2

: it is either in the reduced form or it
can be simplified only by a factor of 2.

Let us notice that both fractions can be simplified by 2 if and only if u and v
are both odd numbers. In this case if we set k = (u+ v)/2 and l = (v− u)/2 we see
that 2(k2 + l2) = u2 + v2, k2 − l2 = uv and v2 − u2 = (v − u)(v + u) = 4kl. Then
after the simplification the two fractions become something very similar to what we
started:

x =
2kl

k2 + l2
, and y =

k2 − l2

k2 + l2
,

where basically the roles of x and y have interchanged if we identify the parameters
the obvious way.

Because v = k+ l and u = k− l we see that gcd(k, l) = 1 and k and l cannot be
both odd. Hence the new fraction cannot be simplified any further by any positive
integer. Hence we have a = v2 − u2, b = 2uv and c = u2 + v2 in case u and v have
different parity or a = 2kl, b = k2 − l2 and c = k2 + l2 in case u and v are odd
which implies that k and l again having different parity. We see that we end up in
either case with basically the same parametric formulae and the only difference is
the parity of a and b. So, we have proved the following theorem:

Theorem 2.1.1. Every primitive Pythagorean triple (a, b, c) with b even is given by
the formula (u2 − v2, 2uv, u2 + v2) with u and v relatively prime natural numbers of
different parity and u > v.

What is interesting here is that one can use this same method to show a symilar
characterization of primitive Pythagorean triples in Gaussian integers (PPTGI):
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triple of non-zero Gaussian integers (A,B,C), such that A2 +B2 = C2 and

gcd(A,B,C) = 1.

Let us remember that a Gaussian integer z = a + bi is even if N(z) = a2 + b2 is
even and otherwise is called odd. This concept is the same as saying the z is even
iff α = 1 + i (a prime) divides z.

We observe that if A and B are both even then C must be even and that
implies α|gcd(A,B,C) = 1, a contradiction. Also if both A and B are odd, then the
sum is even and then C is even. In this case, we can make a little change and observe
that (A, iC, iB) is a primitive Pythagorean triple with the second component even.
Therefore, in general we do not loose much of generality assuming that A and C are
odd and B is even, just as Theorem 2.1.1.

Theorem 2.1.2. Every primitive Pythagorean triple of non-zero Gaussian integers
(A,B,C), with B even is given by the formula (M2 −N2, 2MN,M2 +N2) with M
and N non-zero relatively prime Gaussian integers of different parity.

Problem 2: (Homework) Show that similar properties happen in this situation:

(a) one of the numbers in a PPTGI is a multiple of α3

(b) one of the numbers in a PPTGI is a multiple of 1+2i and one is a multiple
of 1− 2i

(c) there are examples in which none of the numbers in a PPTGI is divisible
by 3 (a prime here two)

(d) the smallest PPTGI, in the sense that max(N(A), N(B), N(C)) is the
smallest non-zero positive number, is essentially (1− 2i, 2 + 2i, 1 + 2i)

(e) the smallest Gaussian integer which is the sum of two non-zero squares, in
two different ways (not necessarily relatively prime) is

−6 + 8i = 2(1 + 2i)2 = (1 + 4i)2 + 32.

Let us use this characterization to find two Pythagorean triples with the same
hypothenuse as in the case of N. We observe that in the case of N, in Theorem 2.1.1
the values of (u, v) are given by (8, 1) and (7, 4). Also, 65 = 5(13) is the product
of the smallest two numbers which can be written as sums of two non-zero squares
in two different ways and with different numbers (50 = 72 + 12 = 52 + 52 does not
satisfy this condition). For Gaussian integers we have 1 + 2i = (1 + i)2 + 12 and
3− 2i = (1 + i)2 + (2− i)2 are the smallest in Z[i] (in terms of their norm). Using
Lagrange’s Identity, (a2+b2)(c2+d2) = (ac−bd)2+(ad+bc)2 = (ac+bd)2+(ad−bc)2

we obtain that

7 + 4i = (2 + i)2 + 22 = (2− 3i)2 + (4 + 2i)2.
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This gives the two PPTGI with the desired property: (−1 + 4i, 8 + 4i, 7 + 4i)
and (−17− 28i, 28− 16i, 7 + 4i).

Problem 3: (Homework) Show that every z ∈ Z[i], z = a + 2bi is a sum of two
non-zero squares for all a and b, except if a ≡ 2 (mod 4) and b ≡ 1 (mod 2).

Problem 4: (Homework)([17]) Show that for z ∈ Z[i], z = a + 2bi, we have a ≡ 2
(mod 4) and b ≡ 1 (mod 2) iff (1 + i)2|z and (1 + i)3 ̸ |z.
Problem 5: (Homework) Find three different writings of z = 2017 + 2016i as a
sum of two squares.

Problem 6: (Homework) Find a similar theorem that characterizes all the primitive
solutions of the Diophantine equation a2 + 2b2 = c2.

A good question here is this: how general is this method? Maybe another
example will be helpful to understand some subtleties that may appear. We consider
the case of a triangle whose sides are a, b and c and one of the angles measures
60◦. Suppose this angle is opposite to side c. Then by the Law of Cosines c2 =
a2 + b2 − 2ab cos 60◦ or

(2.2) c2 = a2 − ab+ b2

We can use this equation as our starting point and apply the same arguments with
the scope of finding a characterization of all primitive solutions of (2.2), i.e. a, b, c ∈
N and gcd(a, b, c) = 1. This excludes that solutions of the form (a, a, a) with a > 1.
Since (2.2) is symmetric in a and b, and a = b is excluded, we may assume that
a < b. We observe that this condition is equivalent to gcd(b, c) = 1 or gcd(a, c) = 1.
Introducing x = a

c
and y = b

c
, we get the equation of an ellipse this time (Figure 2.2):

x2 − xy+ y2 = 1. We have a point of rational coordinates on this curve that we can
use: A(−1, 0).

Introducing the slope of the line connecting A and P (x, y), x, y > 0 given by a
primitive solution of (2.2), we get m = y

x+1
. Using the equation of the curve we see

that

x =
1−m2

1−m+m2
, and y =

2m−m2

1−m+m2
.

From the Figure 2.2, we can see that 0 < m < 1 (or x > 0). Since m ∈ Q we may
write m = u

v
with gcd(u, v) = 1, u < v, u, v ∈ N. Substituting in terms of u and v,

we obtain

x =
v2 − u2

u2 − uv + v2
, and y =

2uv − u2

u2 − uv + v2
.
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P(x,y)

Figure 2.2: Ellipse x2 − xy + y2 = 1, x < y

Let p be a prime that divides v2 − u2 and u2 − uv + v2. It must divide 2v2 −
uv = v(2v − u). We can exclude that p divides v since this attracts p divides
u contradicting gcd(u, v) = 1. It must be true that p divides 2v − u. Because
4v2 − u2 = (2v − u)(2v + u) we get that p divides 4v2 − u2. Hence p must divide
3v2 = (4v2 − u2)− (v2 − u2). This says that p is equal to 3. A similar argument can
be used to show that the second fraction is either in the reduced form or it could
be simplified only by a factor of 3 (a priory a power of 3). Actually we can see that
both fraction can be simplified by 3 if and only if u = 3k ± 1 and v = 3l ∓ 1. So,
if u + v is not a multiple of three the two fractions are in the reduced form and
therefore

a = v2 − u2, b = 2uv − u2 and c = u2 − uv + v2.

Let us see what happens if, for instance, u = 3k + 1 and v = 3l − 1. We notice
that u+v

3
= s ∈ N and 2v−u

3
= t ∈ N. This gives v = s + t and u = 2s − t with

gcd(s, t) = 1. Substituting into the fractions for y and x we obtain

x =
2st− s2

s2 − st+ t2
, and y =

2st− t2

s2 − st+ t2
.

We observe that these fractions cannot be simplified by a 3 this time, because that
will imply that s ≡ ±1 (mod 3) and t ≡ ∓1 (mod 3) which in turn gives u and v
divisible by 3. So in this case

a = 2st− s2, b = 2st− t2 and c = s2 − st+ t2.

This proves the following characterization.

Theorem 2.1.3. Every primitive solution (a, b, c) with 0 < a < b of the Diophantine
equation

a2 − ab+ b2 = c2
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(1, 1, 1) (3, 8, 7) (5, 8, 7) (7, 15, 13) (8, 15, 13) (16, 21, 19)
(5, 21, 19) (11, 35, 31) (24, 35, 31) (7, 40, 37) (33, 40, 37) (13, 48, 43)
(35, 48, 43) (16, 55, 49) (39, 55, 49) (9, 65, 61) (56, 65, 61) (32, 77, 67)
(45, 77, 67) (17, 80, 73) (63, 80, 73) (40, 91, 79) (51, 91, 79) (11, 96, 91)
(85, 96, 91) (80, 99, 91) (19, 99, 91) (55, 112, 97) (57, 112, 97)

Table 2.2: Primitive solutions of a2 − ab+ b2 = c2, with a < b and c less than 100.

is in one of the two forms:

(2.3)
a = v2 − u2, b = 2uv − u2 and c = u2 − uv + v2, with v > u, or

a = 2uv − v2, b = 2uv − u2 and c = u2 − uv + v2, with 2v > u > v/2,

where u, v ∈ N, such that gcd(u, v) = 1, u+ v ̸≡ 0 (mod 3). Conversely, every triple
given by (2.3) is a primitive solution of (2.2).

The primitive solutions of (2.2) with c < 100 are listed in Table 2.2.

We include one more example like this which was proved in [13]:

Theorem 2.1.4. For every positive integers l and k such that, gcd(k, l) = 1 and k
is odd, then a, b and c given by

c = 2l2 + k2 and


b = |2l2 + 2kl − k2|, a = |k2 + 4kl − 2l2|, if k ̸≡ l (mod 3)

a = |2l2 − 2kl − k2|, b = |k2 − 4kl − 2l2|, if k ̸≡ −l (mod 3)

is a primitive solution for a2 + 2b2 = 3c2. Conversely, with the exception of the
trivial solution a = b = c = 1, every primitive solution for a2 +2b2 = 3c2 appears in
the way described above for some l and k.

There are exceptional situations when this method cannot be applied. As an
example, let us see what happens with the Diophantine equation 2a2+3b2 = c2. We
cannot use the same technique as before since (−1, 0) is not on the curve 2x2+3y2 =
1. As a matter of fact there is no point of rational coordinates on this curve that
we can use instead. The idea of proof is to use the trick that we have seen already
about the classification of integers modulo 3. Without loss of generality, suppose we
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have a solution (a, b, c) of 2a2 + 3b2 = c2 which is also primitive. Notice that if we
have a nonzero solution then we have a primitive one. Then if a is a multiple of 3
we see that 3 divides c2. This implies 3 divides c. Hence a = 3a′ and c = 3c′ which
attracts 6a′2 + b2 = 3c′2. Hence, 3 must divide 3c′2 − 6a′2 = b2 which leads us to
a contradiction: 3 divides a, b and c. It remains that a is not a multiple of three.
Thus, a = 3k ± 1 and so a2 = 3l + 1. Then 2a2 + 3b2 = 3s + 2 but c2 cannot be of
the form 3s+ 2.

Problem 7: (Homework) Prove that the equation 3a2+5b2 = c2 has no integer
solution other than the trivial one: a = b = c = 0.

As a classical notation for the greatest common divisor of two integers u and v
(or even more then two but finitely many) not both (all) zero, we will use gcd(a, b).
For instance using the prime factorization one can check that gcd(2012, 3521) = 503.

A book dealing only with the topic of Pythagorean triples is [25]. There are
ramifications of this topic that go deep into the theory of abstract algebra and
analysis. Let us just state the following three facts, without proof, that one can
read more about in [16]:

(2.4) lim
x→∞

#{(a, b, c) ∈ Z3|0 < a < b < c ≤ x, a2 + b2 = c2, gcd(a, b, c) = 1}
x

=
1

2π
,

(2.5)

lim
x→∞

1

x
#{(a, b, c) ∈ Z3|0 < a < b < c, a2 + b2 = c2,

a+ b+ c ≤ x, gcd(a, b, c) = 1} =
ln 2

π2
,

and

(2.6)

lim
x→∞

1

x
#{(a, b, c) ∈ Z3|0 < a < b < c, a2 + b2 = c2,

ab ≤ 2x, gcd(a, b, c) = 1} =
Γ(1/4)

π2
√
2π

,

where Γ(x) =
∫∞
0

e−ttx−1dt defined for x > 0.

A nice undergraduate project could be to find the equivalent of these state-
ments for the primitive solutions of a2 − ab + b2 = c2 as characterized in Theo-
rem 2.1.3. Let us see what is the relevance of (2.4). We counted all the pythagorean
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triples which are primitive disregarding the order of legs with the hypothenuse less
than or equal to 100 and we got 16. Then 16

100
must be close to 1

2π
. Actually this is

a very good approximation since | 16
100

− 1
2π
| ≈ 0.00084.

Finally another interesting question here is to find Pythagorean triples that
have the same hypothenuse. From Table 2.1 we see for instance that 652 = 162 +
632 = 332 + 562. So, we may ask if one can find such examples with an arbitrary
number of representations. In view of Theorem 2.1.1, this question leads us into a
big topic in number theory: representation of numbers as sums of two squares which
we will study later.

2.2 Linear Diophantine Equations

Quotation: “I’m not a religious man, but it’s almost like being in touch
with God when you’re thinking about mathematics. Learning mathemat-
ics is always extraordinarily hard work – reading it, listening to lectures.
I enjoy a kind of mathematical “gossip”, when people sit in easy chairs
with their feet up and tell me their mathematics; then I can learn.” –
Paul R. Halmos, Want To Be A Mathematician: An Automathography,
Springer-Verlag, 1985.)

Notions, concepts, definitions, and theorems: Characterization,
various facts, some problems and some curiosities

One other classical equation that has a definite answer in number theory is
the linear one:

(2.7) ax+ by = c, where a, b, and c are integers not all zero.

Let us observe that if there exist a solution (x0, y0) then there are infinitely many
solutions:

x = x0 + bt and y = y0 − at with t ∈ Z.

If we look at the equation 2x+4y = 3, say, we see that 3 = 2(x+2y). Because 3 is not
divisible by 2 this equation is impossible in integers. So, if a number d > 1 divides a
and b and it does not divide c then there is no solution of this equation. Therefore,
it is necessary for the existence of a solution that gcd(a, b) divides c. Next we need a
preliminary result about the greatest common divisor of two numbers which is well
defined only for two integers not both zero.
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Proposition 2.2.1. Suppose a, b, c and d are integers such that ad− bc = 1. Then
gcd(u, v) = gcd(au+ bv, cu+ dv) for all integers u and v (not both zero).

PROOF. Let us denote by d1 = gcd(u, v) and d2 = gcd(au+bv, cu+dv). Clearly
d1 divides au+bv and cu+dv and so d1 ≤ d2 by the definition of the greatest common
divisor. Similarly since the system{

au+ bv = U

cu+ dv = V

can be solved for u and v and get u = dU − bV and v = aV − cU we see that d2
divides u and v. Hence d2 ≤ d1. By the trichotomy property of integers we get
d1 = d2.

Corollary 2.2.2. Let x ∈ Z be arbitrary. For integers u and v not both zero, we
have gcd(u, v) = gcd(u, v + xu).

PROOF. We let a = 1, b = 0, c = x and d = 1 in the Theorem 2.2.1.

Let us use the method of strong mathematical induction to regain theBézout Lemma
in the case of co-prime numbers:

Lemma 2.2.3. Two integers a and b are relatively prime (or coprime) if and only
if there exists two integers x and y such that ax+ by = 1.

PROOF. For the sufficiency part of this theorem, certainly if ax+ by = 1 holds
then any positive common divisor of a and b divides ax + by and so it must be
equal to 1. Hence gcd(a, b) = 1. For necessity first let us observe that we can
assume that a and b are coprime natural numbers. Then we use strong induction
on k ≥ max(a, b).

Basis step: [k = 1] This forces a = b = 1 and the statement is true if x = 1, y = 0.

Inductive step: k ≥ 1 Suppose the statement is true for every coprime natural
numbers a and b with a, b ≤ k. Consider two natural numbers A and B such that
max(A,B) = k + 1. Clearly A and B cannot be equal and we can say there is an
order one them: A < B = k+1. Hence A ≤ k. Then if we set C = B−A we see that
we see that C ≤ k. By Corollary 2.2.2 we see that 1 = gcd(A,B) = gcd(A,B − A)
(x = −1). So, we can use the induction hypothesis on A and C: there exits x′, y′ ∈ Z
such that Ax′+Cy′ = 1. But this implies Ax′+(B−A)y′ = 1 or A(x′−y′)+By′ = 1.
Therefore, the conclusion follows by taking x = x′ − y′ and y = y′.

Problem 8.(Homework) Show that for two integers a and b not both zero we have

gcd(a, b) = min{ax+ by|ax+ by > 0 and x, y ∈ Z}.
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Problem 9. As a corollary of this fact show that if m ∈ N and a, b ∈ Z are not
both zero then gcd(ma,mb) = mgcd(a, b).

Corollary 2.2.4. [Inverse modulo m]: If gcd(a,m) = 1 then there exists x such
that ax ≡ 1 (mod m).

At this point we can show:

Theorem 2.2.5. Assume a and b are positive integers. The equation (2.4) has
solutions if and only if gcd(a, b) divides c. In case this last condition happens every
solution of (2.4) is given by

(2.8) x = x0 +
b

gcd(a, b)
t, y = y0 −

a

gcd(a, b)
t, t ∈ Z,

where (x0, y0) is a particular solution. The formula (2.8) gives a family of infinitely
many solutions of (2.4) called the general solution.

PROOF. It is clear that if there is a solution then d = gcd(a, b) must divide c.
If on the other hand d|c then c = dk for some k ∈ Z. If k = 0 then a particular
solution of (2.4) is x0 = y0 = 0. Dividing by d we get the equation a′x + b′y = 0
where a = da′, b = db′ with gcd(a′, b′) = 1. So, if (x, y) is an arbitrary solution then
a′ divides −b′y. This implies a′ divides y. Similarly b′ divides x. Then x = b′t and
y = a′s. Hence a′b′(t + s) = 0 which gives s = −t. Therefore (2.8) is satisfied for
any solution of (2.4).

If c is not equal to zero, then if c = dc′ the equation becomes a′x + b′y = c′

with gcd(a′, b′) = 1. We know that there exists x′, y′ ∈ Z such that a′x′ + b′y′ = 1.
Then a particular solution can be obtained: x0 = x′c′ and y0 = y′c′. The rest of
the theorem follows the same way as above by observing that if (x, y) is a general
solution then (x− x0, y − y0) is a solution of (2.4) in which c = 0.

Example: Say we want to solve the Diophantine equation 94x + 17y = 5.
We use the Euclidean Algorithm. Since 94 = 17(5) + 9, 17 = 9 + 8 and 9 = 8 + 1.
Substitute the remainder of the second to last into the last equation we get 9 =
(17− 9)+1 or 9(2) = 17+1. Substitute the remainder of the first equation into the
last one we just got we obtain [94− 17(5)](2) = 17 + 1 or 94(2)− 17(11) = 1. So, a
particular solution of the given equation is (10,−55). The general solution can be
expressed by x = 10− 17t and y = 94t− 55, t ∈ Z.

The following theorem is well known under the name of Fermat’s Little The-
orem and it can be proved in various ways. One can try to prove this statement by
induction using the binomial formula.
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Theorem 2.2.6. (Fermat’s Little Theorem) For a ∈ N and p a prime number,
then

ap ≡ a (mod p).

Here is yet another proof that we learned from Arthur Engel’s book [5].

PROOF. This is a combinatorial proof. Let us count the number of necklaces
that have p stones and each stone may be of a different colors. We can think of
building them: so, the first stone can be of a different colors, the second can be also
of a different colors, and so on. This gives ap choices but lots of them give the same
necklaces. As an example let’s say p = 3 and a = 2. We build a necklaces with
black (B) and white stones (W). So if we build the necklaces say WBB, the order
BBW and BWB will basically give the same necklace. The only exceptions to this
cycling procedure is if we start we BBB or WWW (also see Problem 10 below).
So, in general if we take away the number of choices that are build with stones of
the same color, i.e. a of them, what is left needs to be divisible by p which is the
number of distinct circular cycling that will give the same necklace. Hence ap − a
must be divisible by p.

Problem 10 (Homework) How does the hypothesis of p, being prime, factors out
into this proof?

A corollary of this theorem, which is commonly called the same way and it is clearly
the nontrivial part of the theorem, is stated in the following way.

Corollary 2.2.7. For a ∈ N and p a prime number such that gcd(a, p) = 1, then
ap−1 ≡ 1 (mod p).

The idea of looking for some sort of converse of Corollary 2.2.7 had given a
series of rich developments in number theory. For example, if an odd number p has
the property that 2p−1 ≡ 1 (mod p), should p be a prime? The first number n for
which 2n−1 ≡ 1 (mod n) and n is not a prime is n = 341 = (11)(31). To see that
341 divides 2340 − 1 we see that

2340 − 1 = (210 − 1)(2330 + ...+ 1) and 210 − 1 = 1023 = 341(3).

Other numbers with this property, in order, are 561, 645, 1105, 1387, 1729, 1905,
etc. This defines a sequence of integers which is A001567 (pseudoprimes base 2) in
the The On-Line Encyclopedia of Integer Sequences ([20]).

If we require the property that for every a, such that gcd(p, a) = 1, to have an−1 ≡ 1
(mod p), and if p is composite, it turns out that this is still possible and we get a
sequence called the Carmichael pseudoprimes numbers (A002997, [20]): 561, 1105,



32 CHAPTER 2. SOME DIOPHANTINE EQUATIONS

1729, 2465, 2821, 6601, 8911, etc. Pseudoprimes are of primary importance in
public-key cryptography.

2.3 Representations as sums of two squares

The first result that we need is the fact that we can solve a quadratic congruency
modulo a prime only in the trivial way:

Theorem 2.3.1. Let p be a prime number. Then the quadratic equation x2 ≡ 1
(mod p) has only “two” solutions: x ≡ ±1 (mod p).

PROOF. The equation is equivalent to saying that p divides x2 − 1 = (x −
1)(x + 1). Hence by Euclid’s Lemma 1.3.3 p must divide x − 1 or x + 1. Hence
x ≡ ±1 (mod p). Conversely if x ≡ ±1 (mod p) we square this congruency and
obtain x2 ≡ 1 (mod p).

In other words, this theorem is saying that between the numbers {0, 1, 2, . . . , p− 1}
there are only two that satisfy the equation x2 ≡ 1 (mod p): 1 and p− 1. This idea
gives the following theorem:

Theorem 2.3.2. (Wilson’s Theorem): If p is a prime, we have (p − 1)! ≡ −1
(mod p).

PROOF. We look at the numbers A := {1, 2, . . . , p− 1} and for each a ∈ A, by
Corollary 2.2.4 there exits x such that ax ≡ 1 (mod p). Dividing x by p we may
take its remainder instead of x. This remainder cannot be zero. In other words,
we can say that x can be chosen in A. Let us denote this number in A by a. For
some numbers a this association may turn out to be the same as a: those for which
aa ≡ 1. By Theorem 2.3.1 there are only two numbers with this property: 1 and
p − 1. So, if we take the product of all numbers in A with the exception of these
two numbers, they can be grouped together, in the following way:

1(2)(3) . . . (p− 1) ≡ 1(p− 1)(a1a1) . . . (akak) ≡ p− 1 ≡ −1 (mod p),

or (p− 1)! ≡ −1 (mod p).

An important consequence of this theorem is the following fact about quadratic
congruences x2 ≡ −1 (mod p) with p prime.

Theorem 2.3.3. Consider a prime number p. The equation x2 ≡ −1 (mod p) has
solutions if and only if p = 2 or p ≡ 1 (mod 4).
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Let us investigate this numerically. If p = 5, we get x = ±2. Or, if p = 61, then
we need to search a little to find x = ±11. We will see a simple method by which x
can be calculated.

PROOF. Let us assume first that p = 4k + 3 and by way of contradiction let x
be a solution of x2 ≡ −1 (mod p). Since p− 1 = 4k + 2 = 2(2k + 1) implies that

xp−1 ≡ (x2)(2k+1) ≡ (−1)2k+1 ≡ −1 (mod p).

Let us observe that we must have gcd(x, p) = 1 and so, by Fermat’s Little
Theorem 2.2.6, xp−1 ≡ 1 (mod p). So, −1 ≡ 1 (mod p). This is possible only if
p = 2 but 2 is not of the form 4k + 3. Hence if p ≡ 3 (mod 4) the equation given
has no solution.

On the other hand if p = 4k + 1 then Wilson’s Theorem 2.3.2 implies that

−1 ≡ (p− 1)! ≡ 1(2) . . . (2k)(2k + 1) . . . (4k) (mod p).

So, if we set x = 1(2)(3) . . . (2k) since j ≡ −(4k − j + 1) (mod p) for j =
1, 2, . . . , 2k, we have x2 ≡ −1 (mod p).

We are ready to show another theorem that was proven first by Fermat but
known since 1632 (375 years ago Albert Girard stated it on the basis of numerical
evidence but the first proof was given by Fermat, see [19], page 54)

Theorem 2.3.4. (Fermat) Let p be a prime such that p ≡ 1 (mod 4) or p = 2.
Then there is a representation of p as sum of two perfect squares: p = x2 + y2 with
x, y ∈ N and x < y. This representation is unique.

There are various proofs of this important theorem. One of the simplest proofs is
described next and we learned it from [19].

PROOF. For p = 2 we clearly have p = 12 + 12. By Theorem 2.3.3 we can find
an x such that x2 ≡ −1 (mod p). We look at the function f(a, b) = a+ bx (mod p)
defined on A×A with values in B := {0, 1, · · · p− 1}, where A = {0, 1, ..., k} and k
is the positive integer such that k2 < p < (k + 1)2. This gives a function from a set
with (k + 1)2 values into a set with p values. Since (k + 1)2 > p, by the Pigeonhole
principle we must have at least one of the values of the function f attained for
two different inputs: (a, b), (a′, b′). Hence a + bx ≡ a′ + b′x (mod p). If we set
a − a′ = u and b′ − b = v we get u ≡ xv (mod p) and u, v ∈ [−k, k]. This implies
u2 + v2 ≡ v2(x2 + 1) ≡ 0 (mod p). But 0 < u2 + v2 ≤ 2k2 < 2p. There is only one
integer divisible by p in the interval (0, 2p). Therefore u2 + v2 = p.

For uniqueness we follow the steps recommended in [22], page 132, Exercises
11-13. This is in fact, going back to Euler’s idea to factor a number which can
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p 5 13 17 29 37 41 53 61 73 89
(x,y) (1,2) (2,3) (1,4) (2,5) (1,6) (4,5) (2,7) (5,6) (3,8) (5,8)

97 101 109 113 137 149 157 173 181 197
(4,9) (1,10) (3,10) (7,8) (4,11) (7,10) (6,11) (2,13) (9,10) (1,14)

Table 2.3: Primes of the form 4k + 1 and their representation p = x2 + y2, x < y

be written as a sum of two squares in two different ways. Let us assume that
p = a2 + b2 = c2 + d2 are two different representations of an odd prime p (the
representation of p = 2 is clearly unique). We must have a and b of different
parity and so we may assume a, c are odd and b, d are even. This implies that
u = gcd(a−c, b−d) is even and well defined because the representations are different.
We set a−c = ru and d− b = us for some r, s ∈ Z not zero and so gcd(r, s) = 1. We
have a2−c2 = d2−b2 or (a−c)(a+c) = (d−b)(d+b) which implies r(a+c) = s(d+b).
By Lemma 1.3.3 we know that s must divide a+ c. Then we let a+ c = sv for some
v ∈ Z. This says that d+ b = rv and v = gcd(a+ c, b+ d) and v is an even number
because a+ c and b+d are even. Then one can check that p = [(u

2
)2+(v

2
)2](r2+ s2).

This is a contradiction since p is a prime number.

The first twenty primes of the form 4k + 1 together with their unique repre-
sentation as sum of two squares is (p = x2 + y2, 0 < x < y) is included in Table
2.3.

Corollary 2.3.5. Every Gaussian prime is in one of the following forms, or their
associates:

(a) 1 + i (notice that 1− i = (−i)(1 + i))

(b) for every prime (in N) of the form p = 4k+1, p = a2+b2 (as in Theorem 2.3.4),
we have two different primes zp = a+ bi and z′p = b+ ai

(c) for every prime (in N) of the form p = 4k + 3, this is also a prime in Z[i].

Problem 11: Prove this corollary.

We are going to state Fermat’s Little Theorem for the case of Gaussian integers and
use a different idea for the proof.

Theorem 2.3.6. For a ∈ Z[i] and q a prime in Z[i] such that gcd(a, p) = 1, then
aN(q)−1 ≡ 1 (mod q).

PROOF. Let RCq a complete set of residues modulo q (as in Theorem 1.2.5, for
example). Let us take away the zero residue: RC⋆

q := RCq \ {0}. We define a map
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Sa : RC⋆
q → RC⋆

q, by Sa(x) ≡ ax (mod q), for all x ∈ RC⋆
q. We observe that ax ≡ 0

(mod q) implies q divides a or x and both of these options are excluded by our
hypothesis and for x ∈ RC⋆

q. Hence, Sa is well-defined. Also, we said earlier that we
will show that the cardinality of RCq is N(q) and so the number of elements in RC⋆

q

is N(q)− 1. The function Sa is one-to-one, because if Sa(x) = Sa(y) then ax ≡ ay
(mod q) which implies a(x− y) ≡ 0 (mod q). Therefore, x ≡ y (mod q). But for x
and y in RCq, this attracts x = y. This implies that Sa is actually a bijection, or
in other words, it permutes the elements of RC⋆

q. Therefore, Sa(RC⋆
q) = RC⋆

q and
so taking the product P of all of the elements in RC⋆

q gives

P =
∏

x∈RC⋆
q

Sa(x) ≡
∏

x∈RC⋆
q

(ax) ≡ aN(q)−1P (mod q).

Obviously, since gcd(q, P ) = 1 we can simplify by P and obtain the desired conclusion.

Conventionally we have two types of unique factorizations: one in which the
primes are written in nondecreasing order all to power 1, and one representation in
which the primes appear only one time with a unique positive integer exponent. In
the later case, the primes do not repeat. For instance, the first representation of
441000 is 441000 = (2)(2)(2)(3)(3)(5)(5)(5)(7)(7) as opposed to the second unique
writing 441000 = (23)(32)(53)(72). The last one will be called here the canonical
representation.

Theorem 2.3.7. [Fermat] If the canonical representation of n > 1 is given by

n = 2α

 ∏
p≡1 (mod 4)

pβ

 ∏
p≡3 (mod 4)

pγ


then n can be represented as a sum of two squares if and only if all the γ’s are even
exponents.

PROOF. Suppose n is of the form stated. Then each prime of the form 4k + 1
can be written as a sum of two squares and the other factors are simply squares or
(e.g. the factor 2α) a sum of two perfect squares. Using the identity

(2.9) (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

we see that the product of two numbers which are sums of squares is also a sum of
two squares.
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On the other hand, by way of contradiction let us say there is an odd γ
corresponding to q prime of the form 4k + 3 and n = x2 + y2. Without loss of
generality we may assume that this writing is simplified by any even power of q or
in other words q does not divide x or y. Since γ is assumed odd we cannot make
q disappear as a factor of n after such simplifications and then x2 + y2 ≡ 0 (mod
q). Since q does not divide x we can find a multiplicative inverse of x modulo q, say
x, and then 1 + t2 ≡ 0 (mod q) with t = yx. But this is impossible according to
Theorem 2.3.3.

We are going to address the number of representations, r′2, of a number as
a sum of two squares next counting only representations of the form a2 + b2, with
0 < a ≤ b. For the canonical representation

n = 2α

 ∏
pi≡1 (mod 4), pi|n

pβi

 ∏
p≡3 (mod 4), p|n

pγ


let us define

d(n) =
∏
i

(βi + 1).

Theorem 2.3.8. [Euler (1738)] The number of representations of n, as the sum
of two squares of natural numbers, ignoring order, is

(2.10) r′2(n) =


d(n)
2

if d(n) is even

d(n)+(−1)α+1

2
if d(n) is odd.

We refer the reader to [19] or [22] for the ideas of a proof.

Examples: For instance, if n = 52 we have n = 32+42 and 2(52) = 12+72 = 52+52

so r′2(25) = 1 and r′2(50) = 2. For n = 325 = 52(13), d(n) = 6 and so r′2(n) = 3:
325 = 12 + 182 = 62 + 172 = 102 + 152.

One interesting thing related to these representations is that there are infinitely
many primes even of the form x2 + y4 (see [7]). There are other results similar to
the one in Theorem 2.3.4. We include here a series of such results which one can
read more about in D. Cox book ([4]).

Theorem 2.3.9. [14] For an odd prime p we have

(i) p = x2 + 2y2 for some integers x, y if and only if p ≡ 1 or 3 (mod 8);

(ii) p = x2 + 3y2 for some integers x, y if and only if p = 3 or p ≡ 1 (mod 3);

(iii) p = x2 + 4y2 for some integers x, y if and only if p ≡ 1 (mod 4);
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(iv) p = x2 + 5y2 for some integers x, y if and only if p = 5 or p ≡ 1 or 32

(mod 20);

(v) p = x2 + 6y2 for some integers x, y if and only if p ≡ 1 (mod 6);

(vi) p = x2 +7y2 for some integers x, y if and only if p = 7 or p ≡ 1, 32 or 52

(mod 14);

(vii) p = x2 + 8y2 for some integers x, y if and only if p ≡ 1 (mod 8);

(viii) p = x2 + 9y2 for some integers x, y if and only if p ≡ 1 (mod 12);

(ix) p = x2 + 10y2 for some integers x, y if and only if p ≡ 1 or 32 (mod 10);

(x) p = x2 + 11y2 for some integers x, y if and only if p ≡ 1, 32, 52, 72 or 92

(mod 22);

(xi) p = x2+14y2 for some integers x, y if and only if the equations x2 ≡ −14
and (x2 + 1)2 ≡ 8 (mod p) have solutions;

(xii) p = x2+27y2 for some integers x, y if and only if p ≡ 1 (mod 3) and the
equation x3 ≡ 2 (mod p) has a solution.

Now, how can one obtain a result like the one in Theorem 2.3.9 (i)? Are our
methods good enough for this task? We need first a result as in Theorem 2.3.3,
whose proof is based on Gauss’s and Euler’s ideas.

Theorem 2.3.10. Let us consider p and odd prime. The equation x2 ≡ −2 (mod
p) has solutions if and only if p ≡ 1 or 3 (mod 8).

PROOF. We want to show the necessity first. So, we assume that the equation
x2 ≡ −2 (mod p) has at least one solution, say x0. It is clear that gcd(x0, p) = 1.
Then by Fermat’s Little Theorem we have

(2.11) (−2)
p−1
2 ≡ xp−1

0 ≡ 1 (mod p).

Let us introduce a few sets of residues: A := {1, 2, 3, ..., p−1}, B := {2, 4, 6, ..., p−1}
the set of all even residues in A and C := {1, 3, 5, ...} all odd residues. We obviously
have A = B ∪ C. We consider now the map: g : A → A, g(x) = p − x for all
x ∈ A. Clearly g(B) = C and g(C) = B (because p is an odd number). Also,
let us split B = B1 ∪ B2 and C = C1 ∪ C2, where B1 = {x ∈ B|x ≤ p−1

2
},

B2 = {x ∈ B|x ≥ p+1
2
}, C1 = {x ∈ C|x ≤ p−1

2
}, and C2 = {x ∈ C|x ≥ p+1

2
}. We

also observe that g(B2) = C1 . Next, let us define r to be the number of elements
in B2 and let s be the number of elements in B1.

It is easy to check that
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(2.12)



r = 2k, s = 2k if p = 8k + 1

r = 2k + 1, s = 2k if p = 8k + 3

r = 2k + 1, s = 2k + 1 if p = 8k + 5

r = 2k + 2, s = 2k + 1 if p = 8k + 7.

We observe that we always have r + s = p−1
2
, the number of elements in B. We are

going to take the product of all elements in B:

R =
∏
2i∈B

(2i) =
∏

2i∈B1

(2i)
∏

2i∈B2

(2i) =
∏

2i∈B1

(2i)
∏

2i∈B2

g2(2i) ⇒

R ≡ (−1)r
∏

2i∈B1

(2i)
∏

2i∈B2

(p− 2i) = (−1)r
∏

j∈A, j≤ p−1
2

j.

On the other hand R = 2
p−1
2

∏
j∈A, j≤ p−1

2
j which by (2.11) becomes

R ≡ (−1)
p−1
2

∏
j∈A, j≤ p−1

2

j.

Comparing the two congruencies involving R, we see that (−1)r ≡ (−1)
p−1
2 (mod

p). This implies p = 8k + 1 or p = 8k + 3.

For the other implication let us use an argument by way of contradiction. So,
we assume there is no solution for the equation x2 = −2 (mod p). We employ the
same idea about pairing the elements of the set A := {1, 2, 3, ..., p− 1} in a similar
way but this time taking into account a different map: f : A → A, f(x) ≡ −2x
(mod p) for all x ∈ A. This map is well defined (p is not equal to 2). Also, let us
observe that f(f(x)) = x for all x ∈ A. Indeed, using some obvious properties of
the inverse element modulo p, we have:

−2(−2)x ≡ 22x ≡ x (mod p), for all x ∈ A.

A map with this property (f ◦ f = id) is called an involution. The map f has
no fixed points; in other words, there is no x ∈ A such that f(x) = x, because
this implies x2 ≡ −2 (mod p). So, the elements of A can be paired as (a, f(a)),
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with a < f(a), and we denote the set of the smaller residues in a pair by T . From
Wilson’s Theorem, we get that

1(2)(3)...(p− 1) ≡ −1 (mod p) or
∏
a∈T

(af(a)) ≡ −1 (mod p)

or

(2.13) (−2)
p−1
2 ≡ −1 (mod p).

So, the equality (2.11) is replaced now by (2.13). So, in the previous analysis we

have (−1)r = −(−1)
p−1
2 which is true only if p = 8k + 5 or p = 8k + 7. This is in

contradiction to what we assumed for the converse part and so, it remains that we
must have a solution of the given congruency.

Now we can prove, in a similar way as before, more than part (i) of Theorem 2.3.9.

Theorem 2.3.11. An odd prime p can be written as p = a2 + 2b2 with a and b
natural numbers with a odd, in a unique way, if and only if p ≡ 1 or 3 (mod 8).

PROOF. If p is not of the form mentioned in the statement, then the equality
p = a2 +2b2 implies that gcd(b, p) = 1 which attracts that b exists. So, a2 +2b2 ≡ 0
(mod p) or (ab)2 + 2 ≡ 0 (mod p). This is impossible according to the previous
theorem.

We consider as before h : E × E → A where E := {0, 1, 2, ....k} and A :=
{0, 1, 2, ..., p− 1}, where k2 < p < (k+1)2, and h(a, b) ≡ a+ bx0 for (a, b) ∈ E ×E,
with x2

0 = −2 (mod p). Because |E × E| = (k + 1)2 > p = |A|, the Pigeon Whole
Principle insures that h(a1, b1) = h(a2, b2) for two different pairs (a1, b1), (a2, b2).
Then, we must have a1 + b1x0 ≡ a2 + b2x0 (mod p). Then we set u = a1 − a2 and
v = b2 − b1. The earlier congruency implies u ≡ vx0. So, let us observe that

0 < u2 + 2v2 ≡ v2x2
0 + 2v2 = v2(x2

0 + 2) ≡ 0 (mod p).

On the other hand, u2 + 2v2 ≤ k2 + 2k2 < 3p. This implies that u2 + 2v2 = p
or u2 + 2v2 = 2p. In the second case we see that u = 2u′ and so p = v2 + 2u′2.
Therefore, in either of the two cases, p = a2 + 2b2, with a and b in N (p is odd).

For the uniqueness, we use the same idea of Euler’s. By way of contradiction,
let us assume that p = a2 + 2b2 = c2 + 2d2 with a and c different odd natural
numbers. Automatically, we need to have b ̸= d.
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Then (a− c)(a+ c) = 2(d− b)(d+ b). We know that a− c and a+ c are even;
so, the left hand side contains a factor of 22. This implies that d and b must have
the same parity also, otherwise the right hand side will contain only a factor of 2 in
its prime factorization.

So, as before, we set gcd(a − c, d − b) = 2r, r ≥ 1. Then, a − c = 2ru
and d − b = 2rv with gcd(u, v) = 1, |u|, |v| ≥ 1. The previous equality becomes
u(a + c) = 2v(d + b). Since gcd(v, u) = 1 we should have a + c = vs (|s| ≥ 1) and
then 2(d + b) = us. This implies in particular that 2 must divide either u or s.
We observe that if s is odd, then u must be even and so v must be odd. This in
contradiction with gcd(a+ c, b+ d) = gcd(vs, su

2
) = s gcd(v, u

2
) = s since a+ c and

b+ d are both even. Then, we should have s = 2t, d+ b = ut and a+ c = 2vt. Now,
one can check that

(t2 + 2r2)(u2 + 2v2) = (b+ d)2 +
(a+ c)2

2
+

(a− c)2

2
+ (d− b)2 ⇒

(t2 + 2r2)(u2 + 2v2) = a2 + c2 + 2d2 + 2b2 = 2p ⇒

p is composite, because the factors in the left hand side are more than 2. In a
similar way we can deal the situation in which u is even. In this case v must be odd.
In either case, p is composite and this contradiction shows that the decomposition
must be unique.

Problem 9 Prove in a similar way that if p is a prime number, then p = a2 + 3b2

with a, b in N, if and only if p ≡ 1 (mod 3).

2.4 Linear Diophantine Equations with positive

solutions

Let us consider the Diophantine linear equation

(2.14) ax+ by = n,

with a, b ∈ Z, a, b > 0, gcd(a, b) = 1 and solutions x, y ∈ Z, x, y ≥ 0,

Let us observe that in view of the general solution of this equation we can consider
u and v the particular solution of (2.14) in which n = 1 (au+ bv = 1) and such that
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0 ≤ u < b. Then v is a negative integer or zero, so we change the signs so we will
assume that au − bv = 1 and u, v ≥ 0. Then the formulae for the general solution
of (2.14) is given by:

(2.15)

{
x = un− bt

y = at− vn, t ∈ Z.

We see that in order for x ≥ 0 and y ≥ 0 we need to have

un

b
≥ t ≥ vn

a
.

So, in order for such an integer t to exist, it is enough to have un
b
− vn

a
≥ 1. The

reason is that every interval of real numbers of length at least one contains an integer.
This inequality can be solved in terms of n: nau−bv

ab
≥ 1 or n ≥ ab. So, we proved

that (2.14) has positive solution for every n ≥ ab. For example, if we have bills in
denominations of $3 and $5 we can express every integer amount of money greater
or equal to $15 in terms of such bills (e.g. 15 = 3(5), 16 = 3(2)+5(2), 17 = 3(4)+5,
18 = 3(6), 19 = 3(3)+5(2), and so on). But in this particular case we can go down a
few steps: 14 = 3(3)+5, 13 = 3(1)+5(2), 12 = 3(4), 11 = 2(3)+5, 10 = 3(0)+5(2),
9 = 3(3) and 8 = 3 + 5. But $7 cannot be paid in these denominations.

There is a general question here, known as the money-changing problem, the
coin problem or under a more technical term as the Frobenius problem. What is the
smallest number g(a, b) such that (2.14) has non-negative solutions for all n ≥ g(a, b).
In our previous example we have g(3, 5) = 8. We have the following general result
due to J.J.Sylvester [26].

Theorem 2.4.1. [Sylvester, 1884] The equation (2.14) has non-negative solutions
for all n ≥ (a− 1)(b− 1) and no such solution if n = ab− a− b. (Hence, g(a, b) =
(a− 1)(b− 1).)

PROOF. Let us begin by showing that there is no solution for n = ab − a − b.
By way of contradiction, suppose we have ax + by = ab − a − b for some x, y ≥ 0.
This is equivalent to a(x+1)+b(y+1) = ab. Therefore a divides y+1 and b divides
x + 1. So if we substitute, y + 1 = ay′ (x′ > 0) and x + 1 = bx′ (y′ > 0) we get
x′ + y′ = 1 which clearly has no positive integer solutions.

Let us write n = ab− a− b+ z where z ≥ 1. The equation becomes

a(x+ 1) + b(y + 1) = ab+ z.

As discussed before, its general solution is
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M(b/2-1,a/2-1)

C(-1,a-1) D(b-1,a-1)

A(-1,-1) O(0,0) B(b-1,-1)

,

Figure 2.3: Theorem 2.4.2

(2.16)

{
x′ = x+ 1 = u(ab+ z)− bt

y′ = y + 1 = at− v(ab+ z). t ∈ Z

Since x = x′ − 1 and y = y′ − 1, it is enough to show that x′ > 0 and y′ > 0. We
know from the discussion before the theorem that a solution with x ≥ 0′ and y′ ≥ 0
exists. We need to treat the case when x′ = 0 or y′ = 0. Let us assume x′ = 0. Then
u(ab + z) = bt. Since u is relatively prime with b it must divide t. So, t = us and
then ab + z = bs. This attracts z divisible by b. If z = bz′ then we have a writing
for n using nonnegative coefficients: a(b− 1) + b(z′ − 1) = n. Similar argument can
be used in the case y′ = 0.

Theorem 2.4.2. If gcd(a, b) = 1, there are exactly (a−1)(b−1)
2

nonnegative integers
n < ab−a− b such that the equation (2.14) has a nonnegative solution. As a result,

there are (a−1)(b−1)
2

nonnegative values of n that cannot be represented as ax + by
with x, y ∈ Z, x, y ≥ 0.

PROOF. In what follows we will refer to Figure 2.3. Consider the rectangle
with vertices A(−1,−1), B(b− 1,−1), C(−1, a− 1) and D(b− 1, a− 1). Then the
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C D

A FE

B

Figure 2.4: Theorem 2.4.2 and Theorem 2.4.3

diagonal BC has slope −a
b
and its equation is aX+ bY = ab−a− b. Since, we know

that there are no nonnegative solutions of this equation by the previous theorem, we
conclude that there is no point of integer coordinates inside the rectangle that are
on this line. So all the points of integer coordinates inside the rectangle are either
above or below this diagonal.

Because of the symmetry half of them will be below and half will be above.
Indeed we can use a reflection into the center of the rectangle: O(b/2− 1, a/2− 1).
This means that if (m, k) is such a point in one side of BC, then the point (b−m−
2, a − k − 2) is going to be on the other side of BC. For each point (m, k) below
BC, we can find a number n = am + bk for which a nonnegative solution of (2.14)
exists, namely x = m and y = k. The other way around, if for some n < ab− a− b
there exists a nonnegative solution of (2.14), say (x, y), then (x, y) is unique and it
is going to be in the interior of this rectangle and below BC its diagonal.

Hence the number of values of n < ab − a − b for which the equation (2.14)
has a nonnegative solution is given by the number of points below the diagonal
BC that are in the interior of the rectangle. The total number of point inside
the rectangle is (a + 1)(b + 1) − 2(a + 1) − 2(b − 1) = (a − 1)(b − 1)/2. The
number of nonnegative values n for which (2.14) has no nonnegative solution is then
ab− a− b− (a− 1)(b− 1)/2 + 1 = (a− 1)(b− 1)/2.

Problem 10 Homework: The post office in a small town is left with stamps
of only two values. They discover that there are exactly 33 postage amounts that
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cannot be made up using these stamps, including 46 cents. What are the values of
the remaining stamps?

As a nice connection of this last theorem’s proof with geometry is the following
result known as Pick’s Theorem.

Theorem 2.4.3. Let P a polygon whose vertices have integer coordinates. Denote
by #i the number of points of integer coordinates in the interior of this polygon and
by #∂ the number of points on the sides of the polygon P. Then the area of P in
terms of the usual unit square area is

(2.17) Area(P) =
#∂

2
+ #i− 1

PROOF. This is just a sketch of a proof. Let us observe that in our Figure ??
the area of the triangle ABC is equal to ab

2
and #∂ = a+ b+ 1. Hence the formula

above gives #∂
2
+#i− 1 = a+b+1

2
+ (a− 1)(b− 1)/2− 1 = ab/2 = Area(ABC). The

formula (2.17) can be checked also to work for rectangles having sides parallel to
the coordinates.

Next step is to show that the formula works in the case of a triangle in which
all sides do not pass through additional points of integer coordinates. As before, we
want to check that the formula (2.17) works in this case.

For instance, in the Figure ?? we have

Area(ABC) = Area(ABF ) + Area(AEC) + Area(EFDC)− Area(CDB)

Using the formula already established for the areas in the right hand side of this
equality we see that each point of integer coordinates that is on a common boundary
and inside the triangle ABC counts twice and the formula (having a weight of 1

2
)

is going to be account to exactly as every other interior point of ABC. The only
problem is with the vertices A,B,C and the last −1 that appears in the formula.
Vertex A is accounted twice and it should be accounted only one time with a weight
of 1

2
, C is added twice and subtracted one time so there is no problem, B is added

one time and subtracted in another. This is compensated by the accounting of A.
The difference in a −1 is balanced out by what happens with E and F .

Every polygon has a diagonal that is contained in its interior. The formula
(2.17) is invariant under gluing disjoint polygons along a side. This will help with
using then an argument by induction on the number of vertices of the polygon.
Hence the problem is reduced to a triangle. Another induction argument can be
used, on the number of points on the sides of a triangle, to reduce the problem to
the case discussed above.
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2.5 Pell’s Equation
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Chapter 3

Arithmetic Functions

3.1 Euler’s Totient Function

Quotation: “If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.” John Louis von
Neumann

For every n ∈ N we define φ(n) to be the number of all k ∈ {1, ..., n} such that
gcd(k, n) = 1. A more general theorem than Fermat’s Little Theorem is included
here:

Theorem 3.1.1. [Euler] Let a, n ∈ N, n ≥ 2, such that gcd(a, n) = 1. Then
aφ(n) ≡ 1 (mod n).

PROOF. Let us denote by A the set of numbers less than n which are relatively
prime with n. For instance, if n = 10 then A = {1, 3, 7, 9}. We take two numbers a
and b in A. Then we multiply these numbers and then take the remainder r modulo
n (r ∈ {0, 1, ..., n− 1}). Let us show that r ∈ A.

Indeed if r ̸∈ A then gcd(n, r) > 1. So let us choose a prime q which divides
n and r. Since ab − r is divisible n we get that q divides ab − r. But then it must
divide ab = ab − r + r. By Euclid’s lemma q must divide a or b. Either way that
contradicts the fact a, b ∈ A.

We obtain, in this way, a special operation in A which we are going to denote
by ⋆. In our example, n = 10, we get the following table which gives this operation:

Let us prove next the following simplification rule that this operation has:
a ⋆ b = a ⋆ c implies b = c. Indeed, if a ⋆ b = a ⋆ c we get ab ≡ ac (mod n) or

47
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Table 3.1: The multiplication modulo 10

⋆ 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

n|a(b − c). Since gcd(a, n) = 1 this implies n|b − c which finally gives b = c since
−(n− 2) ≤ b− c ≤ n− 2).

Fix an element a ∈ A and let us say A = {a1, a2, . . . , aφ(n)}. Then multiply all
elements in A by a: aa1, aa2,. . . ,aaφ(n). By the simplification rule, we get φ(n)
different elements in this list. That means we get all elements of A but maybe in a
different order. In our example, this sequences are included as the numbers in the
columns (or the rows) of the above Table 3.1. Let us say A = {a1, a2, . . . , aφ(n)}.
Then

(aa1)(aa2) · · · (aaφ(p)) ≡ a1a2 · · · aφ(n) (mod n).

After simplifying by a1a2 · · · aφ(n) we get

(3.1) aφ(n) ≡ 1 (mod n).

In particular, if n = p with p a prime, φ(p) = p− 1. Every a ∈ N is congruent
with an a′ ∈ A = {1, 2, 3, . . . , p−1} or a is divisible by p. Either way we have ap ≡ a
(mod p) for every a as a result of Euler’s Theorem. This shows that Fermat’s Little
Theorem is just a corollary of Theorem 3.1.1.

Let us find more information about this function φ around which there exists
a huge literature and lots of open questions.

Proposition 3.1.2. For every prime p and n ∈ N we have φ(pn) = pn−1(p− 1).

PROOF. The numbers a between 1 and pn − 1 which are not relatively prime
with pn are: p, 2p,...,pn − p. Hence there are pn − 1− (pn−1 − 1) = pn−1(p− 1) left
that are coprime with pn.

In general a function having the next property of φ is simply called multiplica-
tive.
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Theorem 3.1.3. Let m and n two coprime positive integers. Then

(3.2) φ(mn) = φ(m)φ(n).

PROOF. Let us introduce the sets

A := {k ∈ N|1 ≤ k ≤ n− 1, gcd(k, n) = 1},
B := {k ∈ N|1 ≤ k ≤ m− 1, gcd(k,m) = 1}, and

C := {k ∈ N|1 ≤ k ≤ mn− 1, gcd(k,mn) = 1}.

Define the function f : A×B → {0, 1, ...,mn− 1} by

f(k, l) = km+ ln (mod mn) for all (k, l) ∈ A×B.

Let us first show that our function takes values in C. Indeed, by Corollary 2.2.2
we may suppose gcd(f(k, l),mn) = gcd(km+ ln,mn) > 1. Then for some prime q,
q|mn and q|km + ln. By Euclid’s lemma p|m or p|n. Either way we obtain that
q ≤ gcd(k, n) or q ≤ gcd(l,m) contradicting that k ∈ A or l ∈ B. Hence we actually
have f : A×B → C.

Next we show that f is one-to-one. Suppose f(k, l) = f(u, v) for some
(k, l), (u, v) ∈ A × B. Hence km + ln − (um + vn) ≡ 0 (mod mn). This is the
same as mn|(k− u)m+ (l− v)n. In particular m|(k− u)m+ (l− v)n which implies
m|(l − v)n and by Corollary ?? we have m|l − v. Since m− 2 ≤ l − v ≤ m− 2 we
get l = v. Similarly we have k = u.

Finally let us show that f is onto on C. Let c ∈ C. This implies gcd(c,m) = 1
and gcd(c, n) = 1. By Corollary 2.2.4 there exists m such that mm ≡ 1 (mod n)
and also, there exits n such that nn ≡ 1 (mod m). Define k to be the remainder of
mc divided by n and l to be the remainder of nc divided by m. Let us observe that
k ∈ A and l ∈ B.

Then we just need to check that f(k, l) = c. For this it suffices to check that
km + ln ≡ c (mod mn). Let us observe that km + ln ≡ (mc)m + ln ≡ c (mod n)
and km+ ln ≡ km+ (nc)n ≡ c (mod n). Hence, m and n divide km+ ln− c. Since
gcd(m,n) = 1 we have mn|km+ ln− c.

The existence of the bijection f shows that A×B and C have the same number
of elements: there are φ(n)φ(m) elements in A×B and φ(mn) in C.

These two last results give the practical way to compute φ(m) where m =
pα1
1 pα2

2 · · · pαk
k is one canonical factorizations:

(3.3) φ(m) = m(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pk
).
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Figure 3.1: Graph of φ on [1, 1000]

For instance φ(63) = φ(7(9)) = φ(7)φ(9) = 6(3)(2) = 36. The graph of φ on
the interval [1, 1000] is included in Figure ??.

From the graph we see that the behavior of this function is pretty interesting.
There are basically two functions that give the upper and lower bounds for φ. Here
are some surprising facts about these bounds:

lim inf
n→∞

φ(n) ln lnn

n
= e−γ

where γ is Euler-Mascheroni constant (γ = lim
n→∞

(1 +
1

2
+ · · · + 1

n
− lnn)) and on

average, φ(n) is closer to n as it is to this lower bound:

lim
n→∞

φ(1) + φ(2) + · · ·+ φ(n)

n2
=

3

π2
.

The values of φ(n) are even for all n ≥ 3. One open problem here is the
following conjecture:

there are no n ∈ N such that the equation φ(x) = n has exactly one solution.



3.1. EULER’S TOTIENT FUNCTION 51

Homework: Show that the equation φ(x) = 14 has no solutions.

One useful lower bound for φ(n) is given by

Proposition 3.1.4. For n ̸∈ {2, 6}, φ(n) ≥
√
n.

PROOF. Let us use the formula (3.3). The inequality we need to prove is then
equivalent to

√
n(1− 1

p1
)(1− 1

p2
) . . . (1− 1

pk
) ≥ 1.

For every prime p ≥ 3 we have E(p) := p1/2(1− 1
p
) > 1. Indeed the inequality

can be written as p− 1 > p1/2 or p >≥ 3+
√
5

2
which is certainly true.

If p = 2 then the expression E(p) = 1√
2
. So our claim is not going to be true

for n = 2 or n = 6 since E(2)E(3) =
√
2√
3
< 1. But for every other n even number

n = 2k, with k ≥ 4, E(2)

The idea in the proof of Theorem 3.1.3 leads us to the solution of another
classical problem in number theory: finding a solution of a simultaneous system of
linear congruences such as

{
x ≡ a (mod m)

x ≡ b (mod n)

Assuming gcd(m,n) = 1, we may look for a solution as before which is of the
form x = mk + nl with k = mb and l = na where m is the inverse of m modulo n
and n is the inverse of n modulo m.

This problem is known as the Chinese Remainder Theorem which can be easily
generalized:

Theorem 3.1.5. Let m1, m2, . . . , mk be mutually pairwise coprime numbers and
a1, a2, ..., ak ∈ Z. Then the system of congruences

(3.4)



x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

. . .

. . .

x ≡ ak (mod mk),
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has a solution given by x0 =
∑k

j=1MjMjaj where Mj = (m1m2 · · ·mk)/mj and Mj

is the inverse modulo mj of Mj. Moreover, every solution of this system is of the
form x = x0 + km1m2 · · ·mk, k ∈ Z.

PROOF. The fact that x0 is s solution of (3.4) is essentially based on the ob-
servation that Mj ≡ 0 (mod mj) for all k ̸= j, and MjMjaj ≡ aj (mod mj) by
hypothesis. Given another solution x of (3.4) implies that x− x0 is divisible by mj

for all j = 1, 2, . . . , k. Because m1, m2, . . . , mk are mutually pairwise coprime num-
bers we need to have m1m2 · · ·mk|x− x0 and so the last statement of the theorem
follows.

For an application of this theorem see the exercise after Theorem 3.3.1.

3.2 Construction of multiplicative functions

Two other functions which are classical fixtures in number theory are τ , and σ:

τ(n) number of positive divisors of n,

σ(n) sum of allpositive divisorsof n.

Theorem 3.2.1. If n = pa11 pa22 · · · pakk is one of the canonical prime factorizations
of n, then τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1) and

σ(n) =
pa1+1
1 − 1

p1 − 1

pa2+1
2 − 1

p2 − 1
· · · p

ak+1
k − 1

pk − 1
.

Both functions, τ and σ, are multiplicative.

PROOF. Let us observe that the positive integer divisors of n are all of

the form p
a′1
1 p

a′2
2 · · · pa

′
k

k with 0 ≤ a′i ≤ ai, i = 1, 2, . . . , k. All statements follow from
this observation and the formula:

1 + r + · · ·+ rs =
rs+1 − 1

r − 1
.

There is a standard way to construct another multiplicative function out of a
given one.
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Theorem 3.2.2. If f is multiplicative the function

F (n) =
∑
d|n

f(d),

is also multiplicative.

PROOF. If m and n are in N such that gcd(m,n) = 1, then

F (m)F (n) =
∑

d|m f(d)
∑

d|n f(d) =
∑

d1|m,d2|n f(d1)f(d2)

=
∑

d1|m,d2|n f(d1d2) =
∑

d|mn f(d) = f(mn).

The last before last equality is based on the fact that {d : d|mn} = {d1d2 :
d1|m andd2|n} which can checked by double inclusion and using the hypothesis
that gcd(m,n) = 1.

Homework: If gcd(m,n) = 1 and d|mn, d1 = gcd(m, d), d2 = gcd(n, d).
Show that d = d1d2.

A perfect number is a number n for which σ(n) = 2n. It is not known if there
are any odd perfect numbers. This conjecture has been tested for all odd numbers
less than 10400. It was in the Elements of Euclid this proposition:

Theorem 3.2.3. If 2p − 1 is a prime number (called Mersenne prime) then n =
2p−1(2p − 1) is a perfect number. Every even perfect number n is of this form.

PROOF. The first part is just an application of the Theorem 3.2.1:

σ(n) =
2p − 1

2− 1

q2 − 1

q − 1
= (2p − 1)(q + 1) = 2p(2p − 1) = 2n

where q = 2p − 1.

If n is perfect and even, let n = 2kt be its prime decomposition in which all
odd primes are put together in the factor t. We have k ≥ 1. Since σ is multiplicative
we have

(3.5) 2n = 2k+1t = σ(n) = (2k+1 − 1)σ(t).

Since gcd(2k+1, 2k+1 − 1) = 1, this implies 2k+1|σ(t) which in turn attracts
σ(t) = 2k+1s. Then, after substitution in (3.5), we get t = (2k+1 − 1)s with s ∈ N.
By way of contradiction, we assume that s > 1. Then there are at least three distinct
factors of t: 1, s and t (the hypothesis that k ≥ 1 implies t ̸= s).
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Hence 2k+1s = σ(t) ≥ 1+s+t = 1+2k+1s which is a contradiction. Therefore,
it remains that s = 1 and so σ(t) = t + 1. This implies that t is a prime and so
n = 2k(2k+1 − 1) which proves the claim of the theorem if we set p = k + 1.

There is a well known identity for sum of the powers of the consecutive positive
integers:

n∑
k=1

k3 =

(
n∑

k=1

k

)2

, n ∈ N.

A very similar identity takes place for the function τ :

(3.6)
∑
k|n

τ(k)3 =

∑
k|n

τ(k)

2

, n ∈ N.

Homework: Prove (3.6).

3.3 Möbius Inversion Formula

Suppose we have a formula F (n) =
∑

d|n f(d) with f a multiplicative function. If
we give values for n we get

F (1) = f(1), F (2) = f(1) + f(2), F (3) = f(1) + f(3), F (4) = f(1) + f(2) + f(4),

F (5) = f(1) + f(5), F (6) = f(1) + f(2) + f(3) + f(6), F (7) = f(1) + f(7),

F (8) = f(1) + f(2) + f(4) + f(8), F (9) = f(1) + f(3) + f(9), . . .

These formulae can be solved for f(n) in terms F (m) to get

f(1) = F (1), f(2) = F (2)− F (1), f(3) = F (3)− F (1),

f(4) = F (4)− (F (2)− F (1))− F (1) = F (4)− F (2), f(5) = F (5)− F (1),

f(6) = F (6)− F (1)− (F (2)− F (1))− (F (3)− F (1)) = F (6)− F (2)− F (3) + F (1),

f(7) = F (7)− F (1), f(8) = F (8)− F (1)− (F (2)− F (1))− (F (4)− F (2)) = F (8)− F (4),

f(9) = F (9)− F (1)− (F (3)− F (1)) = F (9)− F (3), . . .
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and this can be continued until a pattern is discovered. One is led to the introduction
of the following function discovered by August Ferdinand Möbius (1790-1868) (well
known for his twisted band):

µ(n) =


1 if n = 1;

(−1)k if n = p1p2...pk, where pi are distinct primes;

0 otherwise.

This definition is clever enough to provide a general formula for f(n) in terms
of F (m):

Theorem 3.3.1. If F (n) =
∑

d|n f(d) then

(3.7) f(n) =
∑
d|n

µ(d)F (
n

d
), n ∈ N.

PROOF. One can show that µ is multiplicative and

∑
d|n

µ(d) =

{
1 if n = 1;

0 if n > 1.

To show (3.7) we get

∑
d|n

µ(d)F (
n

d
) =

∑
d|n

µ(d)
∑
c|n

d

f(c) =
∑

d|n and c|n
d

µ(d)f(c).

We notice that d|n implies n = dm and c|n
d
= m gives m = ck with m, k ∈ N.

Hence n = dck. This implies c|n and d|n
c
. Conversely, if c|n and d|n

c
then d|n and

c|n
d
. Hence, in the above equality we can switch the order of summation but after

all over the same set of pairs (d, c):∑
d|n

µ(d)F (
n

d
) =

∑
c|n and d|n

c

µ(d)f(c) =
∑
c|n

f(c)
∑
d|n

c

µ(d).

But the last sum is equal to zero unless n
c
= 1 or c = n. Hence it reduces to

f(n).

Let us observe that
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τ(n) =
∑
d|n

1,

so we can apply the inversion formula and obtain

1 =
∑
d|n

µ(d)τ(
n

d
).

Similarly, we notice that

σ(n) =
∑
d|n

d,

which gives

n =
∑
d|n

µ(d)σ(
n

d
).

Exercise: Show that there are infinitely many n such that µ(n)+µ(n+1) = 0.

Because µ(k) = 0 for every k divisible by a perfect square we can look for n
satisfying the system {

n ≡ 0 (mod 4)

n+ 1 ≡ 0 (mod 9)

This leads to the Chinese Remainder Theorem and so x = 36k+8 with k ∈ Z
will work.

One important property of the totient function φ related with these type of
sums is given in the next theorem.

Theorem 3.3.2. For every n ∈ N we have

(3.8)
∑
d|n

φ(d) = n.

PROOF. First let us partition the set A := {1, 2, . . . , n} is classes

Cd := {k ∈ A : gcd(n, k) = d}
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for each d|n. Next, we show that #Cd is φ(n/d). Indeed, k ∈ Cd implies k = dl,
n = dm with gcd(m, l) = 1. So, every k ∈ Cd defines uniquely an element l in
{1, 2, . . . ,m} such that gcd(l,m) = 1. This correspondence is a bijection and so
#Cd = φ(m) = φ(n/d). Since Cd forms a partition of A (each element in A is in
one of these classes and every two different classes are disjoint) we have

#A =
∑
d|n

#Cd =
∑
d|n

φ(n/d) =
∑
d|n

φ(d)

which gives (3.8).

Problem: Prove that
φ(n)

n
=
∑
d|n

µ(d)

d
.

With a little thinking, one can see that this identity above is nothing else but
(3.3).
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Chapter 4

The Law of Quadratic Reciprocity

4.1 Euler’s Criterion

Quotation: “It is a matter for considerable regret that Fermat, who
cultivated the theory of numbers with so much success, did not leave
us with the proofs of the theorems he discovered. In truth, Euler and
Lagrange, who have not disdained this kind of research, have proved most
of these theorems, and have even substituted extensive theories for the
isolated propositions of Fermat. But there are several proofs which have
resisted their efforts. Recherches d’Analyse Indéterminée, Hist Acad Roy
des Sciences (1785/1788) 513. ” Adrien-Marie Legendre (1752-1833).

The law of quadratic reciprocity is referring to a relationship between two
different prime numbers, say p and q, in terms of the existence or non-existence of
solutions for the equations

x2 ≡ p (mod q),

y2 ≡ q (mod p).

In order to give the statement of this important theorem in one of its modern

formulations we need to introduce yet another function, with notation
(

·
p

)
, defined

for every odd prime p and every a coprime with p known as the Legendre symbol:

(4.1)

(
a

p

)
=


1 if the equation x2 ≡ a (mod p) has a solution,

−1 if the equation x2 ≡ a (mod p) has no solution

59
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This relationship can be simply formulated in terms of the Legendre symbol:

Theorem 4.1.1. [Law of Quadratic Reciprocity] For every p and q odd prime
numbers we have

(4.2)

(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

For instance if p = 17449, which is the 2007th prime and q = 7. The right
hand side of (??) is equal to 1. Also, p ≡ 5 (mod 7) and so the equation x2 ≡ p
(mod 7) has no solution. Theorem 4.1.1 says that the equation y2 ≡ 7 (mod 17449)
has no solution which is a fact a lot harder to check computationally.

In order to prove this theorem we need some preliminary results. First, we
have almost stumbled over the following result when we looked at representations
of numbers as sums of two squares.

Theorem 4.1.2. [Cauchy’s Criterion] Let p be an odd prime and a such that
gcd(a, p) = 1. Then (

a

p

)
≡ a

p−1
2 (mod p).

PROOF. Suppose first that
(

a
p

)
= 1. Then there is a solution to the equation

x2 ≡ a (mod p). Clearly we must have gcd(x, p) = 1. Hence by Fermat’s Little
Theorem we have xp−1 ≡ 1 (mod p). This gives

a
p−1
2 ≡ (x2)(p−1)/2 ≡ xp−1 ≡ 1 =

(
a

p

)
, (mod p).

Let us assume then that
(

a
p

)
= −1. Then the equation x2 ≡ a (mod p)

has no solution. This makes the function g(x) = ax (mod p) defined on X :=
{1, 2, . . . , p − 1}, be a function that has no fixed point. Here we used the notation
as before x for the inverse (in X) modulo p of x. Indeed, a fixed point x of g gives
ax ≡ x (mod p), or after multiplying by x both sides of the congruence we get
a ≡ x2 (mod p). By hypothesis this equation has no solution. Hence, g has no fixed
point. Then we notice that g(g(x)) = a(ax) ≡ aax ≡ x (mod p). [We used the
following two properties of the inverse function: uv = u v and u = u for all u and v
coprime with p.]

This implies that g(g(x)) = x for all x ∈ X. A map with this property is called
and involution. The idea of using an involution to prove things in number theory
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has been really successful (see [12] and [27]). Hence we can group the elements of
X in pairs (x, g(x)) and notice that xg(x) ≡ a (mod p) for every x ∈ X. Since each
pair has exactly 2 elements (g(x) ̸= x) there are precisely p−1

2
pairs. Let us choose

from each pair the smallest of the two numbers and put it in a set T . Hence we have

1(2)(3) · · · (p− 1) =
∏
x∈T

xg(x) ≡ a
p−1
2 (mod p)

and so by Willson’s Theorem a
p−1
2 ≡ −1 (mod p).

The next ingredient we need is the so called Gauss’s Lemma:

Lemma 4.1.3. [Gauss] Let p be an odd prime and a such that gcd(a, p) = 1.
Consider the set

U := {u|p
2
< u ≤ p− 1, u ≡ ka (mod p) for some k = 1, 2, ...,

p− 1

2
}

and r = #U . Then
(

a
p

)
= (−1)r.

PROOF. Let us consider the similar set

V := {u|1 ≤ u <
p

2
, u ≡ ka (mod p) for some k = 1, 2, ...,

p− 1

2
}

and define s = #B. The residues in X of ka modulo p are distinct for all k =
1, 2, . . . , p−1

2
. Then we have s+ r = p−1

2
. Let us define

h : U → W := {1, 2, . . . , (p− 1)/2}

defined by f(x) = p − x, x ∈ U . Let us show that Range(h) = W \ V . For this it
suffices to show that h(x) ̸∈ V for all x ∈ U . Indeed, if h(x) = p − x = u for some
x ∈ U and u ∈ V . This implies p|x + u or 0 ≡ x + u ≡ (i + j)a (mod p) for some
i, j ∈ {1, 2, . . . , p−1

2
} (i ̸= j). Because gcd(a, p) = 1 we see that p|(i + j). This is

impossible since i+ j ∈ {2, 3, . . . , p− 1}.
Then modulo p we have

1(2) . . . (
p− 1

2
) =

∏
x∈U

(p− x)
∏
x∈V

x ≡ (−1)r
∏
x∈U

x
∏
x∈V

x ≡ (−1)r
∏

j=1,2,..., p−1
2

(ja)

Simplifying by 1(2) . . . (p−1
2
) both sides we get
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1 ≡ (−1)ra
p−1
2 (mod p)

which after using Euler’s Criterion gives the conclusion of the Lemma.

The next fact we need is due to a simplification due to Eisenstein (Ferdinand
Gotthold Max 1823-1852) to the third proof for the Law of Quadratic Reciprocity
given by Gauss. To state this lemma we need to introduce the function ⌊x⌋ which
is called the greatest integer part and it is, what its name says it is, the greatest
integer k such that k ≤ x.

Lemma 4.1.4. Let p be an odd prime and a and odd integer such that gcd(a, p) = 1.
Then (

a

p

)
= (−1)T (a,p)

where

T (a, p) =

p−1
2∑

j=1

⌊ja
p
⌋.

PROOF. For every j = 1, 2, . . . , p−1
2

we have ja = p⌊ ja
p
⌋+ rj where rj ∈ U ∪ V

with U and V defined as in the proof of the Gauss’s Lemma. Adding up these
equalities we have

(4.3) a(

p−1
2∑

j=1

j) = pT (a, p) +
∑
x∈U

x+
∑
x∈V

x.

By the facts shown in the previous Lemma, we have

∑
x∈U

(p− x) +
∑
x∈V

x =

p−1
2∑

j=1

j,

or

(4.4) pr −
∑
x∈U

x+
∑
x∈V

x =

p−1
2∑

j=1

j.

From (4.3) and (4.4) we obtain
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(a− 1)

p−1
2∑

j=1

j = p(T (a, p)− r) + 2
∑
x∈U

x.

Because a and p are odd we can take the above equality modulo 2 and obtain
that T (a, p) ≡ r (mod 2) which in conjunction with Gauss’s Lemma proves what we
want.

Proof of the Theorem 4.1.1.

We need to prove the identity

(4.5) T (q, p) + T (p, q) =
p− 1

2

q − 1

2
,

where T (p, q) is defined as in the proof of the previous Lemma. We observe that
(4.5 actually is enough to obtain (??). Let us assume that p < q.

The idea to show (4.5 uses a counting of the lattice points inside and on two
sides (avoiding axes) of the rectangle R of vertices (0, 0), (0, (q−1)/2), ((p−1)/2, 0)
and ((p−1)/2, (q−1)/2). The Figure ?? shows the lattice points in the case p = 17,
q = 23.

We consider the line of equation y = qx/p. We observe that this line does not
pass through any of these lattice points. If there is a point (a, b) ∈ Z on this line
then bp = qa which attracts b = qk, a = pk with k ∈ Z. These points avoid the
specified area in the rectangle R.

The number of these lattice points is equal to p−1
2

q−1
2
. We count the points

above the line y = qx/p and then the ones below it in R.

Those points below this line are points (x, y) ∈ Z × Z that satisfy y < qx/p,
1 ≤ x < (p+ 1)/2, 1 ≤ y ≤ (q− 1)/2. Notice we can count these points on columns
and for each 1 ≤ i ≤ (p−1)/2 there are ⌊ qi

p
⌋ of y’s satisfying the inequality y < qi/p

since q(p−1)
2p

< (q−1)
2

(p < q). Hence there are
∑

i=1,2,...,(p−1)/2

⌊qi/p⌋ = T (q, p) points

below the line y = qx/p.

For those above this line we see that the points are characterized by (x, y) ∈
Z× Z that satisfy y > qx/p, 1 ≤ x ≤ (p− 1)/2, 1 ≤ y ≤ (q − 1)/2. The inequality
y > qx/p is equivalent to x < py/q. Again we notice we can count these points on
rows and for each 1 ≤ j ≤ (q − 1)/2 there are ⌊ qi

p
⌋ of x’s satisfying the inequality

x < pj/q since p(q−1)
2q

< (p+1)
2

. Hence there are
∑

j=1,2,...,(q−1)/2

⌊pj/q⌋ = T (p, q) points

above the line y = qx/p.
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Figure 4.1: Lattice points in the case p = 17 and q = 23.

Other properties of the Legendre symbol are recorded in the next proposition.

Theorem 4.1.5. Let p an odd prime and a, b such that gcd(a, p) = gcd(b, p) = 1.
We have

(i) if a ≡ b (mod p), then (a
p
) = ( b

p
);

(ii) (a
p
)( b

p
) = (ab

p
);

(iii) (a
2

p
) = 1;

(iv) (2
p
) = (−1)

p2−1
8 ;

(v) (−1
p
) = (−1)

p−1
2 .

(vi) (3
p
) = 1 iff p ≡ 1 or 11 (mod 12).

These properties including the Law of Quadratic reciprocity can be used to
calculate relatively easy the Legendre symbol.

Example: Suppose we want to compute(
2007

29

)
=

(
6

29

)
=

(
2

29

)(
3

29

)
= (−1)(−1) = 1.
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