
Training Putnam Problems 1

1 Inequalities

1. Suppose that x, y, z > 0. Show that:

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx+ x2
≥ x+ y + z

3

Furthermore, show that equality holds if and only if x = y = z .

2. Given a triangle △ABC, and a point P inside the triangle, we denote by da, db, and dc,
the distances from P to the lines which contain the sides of the triangle. Find the point P
for which the product dadbdc, is maximized.

d_a

d_b

d_c

A

B
C

P

Figure 1

3. Show that for every n ≥ 2 (positive integer) we have

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
≥ n( n

√
n+ 1− 1).

A variation of this is the following inequality

n(1− n

√
1

2
) +

1

2n
≥ 1

n
+

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n− 1
≥ n(

n
√
2− 1).

Another variation is

2n(1− 2n

√
1

3
) +

1

3n
≥ 1

n
+

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

3n− 1
≥ 2n(

2n
√
3− 1).

4. Prove that if x ≥ 1, y ≥ 1 and z ≥ 1, then
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1

1 + x
+

1

1 + y
+

1

1 + z
≥ 1

1 +
√
xy

+
1

1 +
√
yz

+
1

1 +
√
zx

≥ 3

1 + 3
√
xyz

(1)

5. Let ai, bi be positive real numbers i = 1, 2, ..., n (n ∈ N). Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ [(a1 + b1)(a2 + b2) · · · (an + bn)]
1/n . (2)

6. Let x, y, and z be positive numbers such that x+ y + z = 3. Prove that

x4 + x2 + 1

x2 + x+ 1
+

y4 + y2 + 1

y2 + y + 1
+

z4 + z2 + 1

z2 + z + 1
≥ 3xyz (3)

7. For positive real numbers a, b and c, show that

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2
Nasbitt’s Inequality.

A variation of this is for four numbers a, b, c and d:

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ 2.

8. Suppose that a1, a2, ..., an with n ≥ 2 are real numbers greater that −1, and all the
numbers aj have the same sign. Show that

(1 + a1)(1 + a2) · · · (1 + an) > 1 + a1 + a2 + · · ·+ an.

As a corollary, we have Bernoulli’s inequality

(1 + x)n ≥ 1 + nx, n ≥ 1, x > −1,

but it is a calculus exercise to show it works for n ≥ 1.

9. Show that if a, b and c are positive then

ln
27abc

(a+ b+ c)3
≤ (a− b)2 + (b− c)2 + (a− c)2

3
.

10. Let n ∈ N and x1, x2, ..., xn be n real numbers greater or equal than 1 such that∑n
i=1

1
xi

= 1. Prove that

n

1/2 + n2
≤

n∑
i=1

1

1/2 + x2
i

≤ 2

3
. (4)
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11. [B2-2005] Find all positive integers n, k1, k2, ..., kn such that

k1 + · · ·+ kn = 5n− 4 and
1

k1
+ · · ·+ 1

kn
= 1

12. [B2 1988] Prove or disprove: If x and y are real numbers with y ≥ 0 and y(y + 1) ≤
(x+ 1)2, then y(y − 1) ≤ x2. Hint: See the figure below!

Figure 2

13. [ Hardy’s Inequality] (a) Suppose that p < 1 and we have a sequence of non-negative
numbers {an}. The we have

∞∑
n=1

(
ap1 + ap2 + · · ·+ apn

n

)1/p

≤ q1/p
∞∑
n=1

an,

where q = 1/(1− p). Show that if p = 1 the left hand side in the above inequality may not be
convergent while the right hand side is a convergent series. The expression in the summand in
the left hand side is called the p-power mean of a1, a2, ...,an:

Mp(a1, a2, ..., an) =

(
ap1 + ap2 + · · ·+ apn

n

)1/p

.

(see Power mean)

(b) The continuous version is that for a non-negative p-integrable function f (here p > 1),
we have ∫ ∞

0

(
1

x

∫ x

0

f(t)dt)pdx ≤ (
p

p− 1
)p
∫ ∞

0

f(x)pdx.

Hint: Substitution f(x) = g(x1− 1
p )x− 1

p ... and then Jensen’s Inequality.

(c) [Carleman’s Inequality] If {an} is a sequence of positive numbers, then

3
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∞∑
n=1

n
√
a1a2 · · · an ≤ e

∞∑
n=1

an.

(d) [B2- 2021] The problem was formulated in a different but equivalent way:

∞∑
n=1

n

2n
(a1a2 · · · an)1/n ≤ 2

3

∞∑
k=1

ak.

(e) If {an} is a sequence of positive numbers, then

∞∑
n=1

n
1
a1

+ 1
a2

+ · · ·+ 1
an

≤ 2
∞∑
n=1

an.

(f) If {an} is a sequence of positive numbers, then

∞∑
n=1

1
1
a1

+ 1
a2

+ · · ·+ 1
an

≤
∞∑
n=1

an.

14. Problem 4857. Crux 49(6) (June Issue 2023) Let a, b, c be positive

real numbers such that a+ b+ c = 3
2
. Show that aabb + bbcc + ccaa ≥ 3

2
.

15. A strange inequality Show that for all x, y, z ≥ 0, we have

x3 + 2

2 + x+ y + z3
+

y3 + 2

2 + y + z + x3
+

z3 + 2

2 + z + x+ y3
≥ 9

5
. (5)

2 Discrete Math

1. Given n a non-negative integer, find the largest power of 2 which divides ⌊(1+
√
3)2n+1⌋.

Here ⌊x⌋ denotes the largest integer which is less than equal to x.

2. Prove that there exists a unique function f from the set (0,∞) of positive real numbers
to (0,∞) such that

f(f(x)) = 6x− f(x)

and f(x) > 0 for all x > 0.

3. Let n be a positive even integer. We write the numbers 1, 2, · · ·n2 in a square grid such
that the k-th row, from left to right reads:

(k − 1)n+ 1, (k − 1)n+ 2, · · · , (k − 1)n+ n
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We then color the squares on the grid so that half of the squares in each row and in each
column are colored red and half are colored blue. Show that the sum of the numbers which
are colored red is equal to the sum of the numbers which are colored blue.

4. Suppose that n is a positive integer. Prove that:(
n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · ·+
(
n

n

)2

=

(
2n

n

)
.

3 Geometry

1. Suppose that ABCD is a tetrahedron in 3-space (which is not necessarily regular). At
each face Sj; j = 1, ..., 4 of the tetrahedron, we draw a vector n⃗j which satisfies:

i) n⃗j is perpendicular to Sj,
ii) n⃗j points outwards,
iii) |n⃗j| equals the surface area of Sj.
Show that: n⃗1 + n⃗2 + n⃗3 + n⃗4 = 0⃗.

C

O

A

B

Figure 2

2. The graph below is the polar curve of

r =
√
cos 2θ +

7

5
cos θ

in the Cartesian plane for values of θ where
√
cos 2θ exists. Determine with proof whether

the graph is a circle.

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

Figure 3
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3. The figure below is a trapezoid (DC||AE) with CD = AD = AB = BE and ∠DAB =
90◦. Cut this region inside of the trapezoid into four congruent regions.

E

CD

A B

Figure 4

4. Triangle ABC has area 1. Points E, F , G lie, respectively, on sides BC, CA AB such
that AE bisects BF at point R, BF bisects CG at point S, and CG bisects AE at point T .
Find the area of the triangle RST .

G

F
A C

B

Figure 5

5. Let a, b, and c be the side lengths of a nondegenerate, nonequilateral triangle

with largest angle α. Let T be the set of lengths t such that there exists an

equilateral triangle ABC in the plane with origin O such that AB = t, OA =
c, OB = a, and OC = b.
(a) Prove that |T | = 2.
(b) Prove that the smaller of the two equilateral triangles determined by T does

not contain O in its interior.

(c) Prove that the larger of the two equilateral triangles determined by Tcontains
O in its interior if and only if π

3
< α < 2π

3
.
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B

C

B

C

O A(1,0)
A(1,0)O

Figure 6, △ABC

6. [A-1 (2009)] Let f be a real-valued function on the plane such that for every square
ABCD in the plane, f(A) + f(B) + f(C) + f(D) = 0. Does it follows that f(P ) = 0 for all
points in the plane?

7. [B-1 1986]
Inscribe a rectangle of base b and height h and an isosceles triangle of base b in a circle of

radius one as shown. For what value of h do the rectangle and triangle have the same area?

Figure 7

7. [B-4 1985]
Let C be the unit circle x2 + y2 = 1. A point p is chosen randomly on the circumference

of C and another point q is chosen randomly from the interior of C (these points are chosen
independently and uniformly over their domains). Let R be the rectangle with sides parallel
to the x and y-axes with diagonal pq. What is the probability that no point of R lies outside
of C ?

7



st

r

q

p

Figure 8

8. Given a right triangle ABC with m(∠ACB) = 90◦ and BC = 2AC, construct isosceles
right triangles △ABF and △ACE on AC and AB as in Figure 2 (right angles at E and F ,
both points in the interior of the anlge ∠BAC). Show that EF is parallel to AC.

F

A

B
C

Figure 2, Right triangle at C, BC=2AC
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4 Number Theory

Some facts about 2022:

� 2023 = 7 · 17 · 17

� 2023 = 23 + (−9)3 + 143, 7 = 03 + (−1)3 + 23, and 17 = 13 + 23 + 23.

� Sum of all divisors σ(n) = 2456

� There are 1,632 positive integers (up to 2023) that are relatively prime to 2023. In
other “words” ϕ(2023) = 6 · 17 · 16 = 1632.

� 2023 = 211 − 52

1. Suppose that P is a polynomial with integer coefficients and suppose that there exists a
positive integer n such that none of the values P (1), P (2), ... , P (n) are divisible by n. Show
that P doesn’t have any integer roots.

2. Show that all of the numbers F0, F1, ..., Fn where Fk = 22
k
+1 (Fermat’s numbers), are

pairwise relatively prime.

Remark: It is known that the first five terms of {Fk} are primes and it is not known if there
are any other primes in this sequence:

{F0, F1, ...} = {3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ...}

Fermat wrongly conjectured that all of these numbers are primes and Euler proved that F5 =
641 · 6700417. We notice that this problem shows there are infinitely many primes.

3. Suppose that p is a prime number. Show that (p− 1)! + 1 is divisible by p.

4. Let us denote by A the set of all positive integers which are not divisible by the square of
any prime number, i.e.,

A = {n ∈ N| q ∈ N, q2|n2 =⇒ q = 1} = {1, 2, 3, 5, 6, 7, 10, ...}

Given a positive integer n, show that:∑
k∈A

⌊
√

n/k⌋ = n.

Hint: Induction on n, and look for the terms in the sum that are changing their values.
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5. Suppose p is a prime number. Prove that

p∑
j=0

(
p

j

)(
p+ j

j

)
≡ 2p + 1 (mod p2).

Hint: (Recall that
∑p

j=0

(
p
j

)
= 2p.)

6. A positive integer is squarely correct if it is a perfect square or if its base-10 repre-
sentation consists entirely of adjacent blocks of digits that are positive perfect squares. For
example, 99 and 100 are two consecutive numbers that are both squarely correct. However,
101 is not squarely correct- only positive perfect squares are allowed by definition.

a) Are there infinitely many pairs of consecutive correct numbers ?
b) It is possible to find three or more consecutive squarely correct number ?

Remark: The sequence of squarely correct numbers in increasing order starts like this :

1, 4, 9, 11, 14, 16, 19, 25, 36, 41, 44, 49, 64, 81, 91, 94, 99, 100, ....

(check to see if I missed any of them !)

7. A heronian triangle is a triangle with positive integer side lengths and positive integer
area. Denoting the side lengths of a Heronian triangle by a, b and c, the triangle is called
primitive if gcd(a, b, c) = 1. We shall say that a primitive Heronian triangle has an equiv-
alent rectangle if there exists a rectangle with integer length and width that shares the same
perimeter and area as the triangle. Show that infinitely many primitive Heronian triangles
have equivalent rectangles.

8. Show that every positive rational number can be written as a quotient of products of factorials
of (not necessarily distinct) primes. For example,

10

9
=

2! · 5!
3! · 3! · 3!

.

9. [A1 -2005] Show that every integer is a sum of one or more numbers of the form 2r3s, where
r and s are nonnegative integers and no summand divides another. (For example 23 = 9+8+6.)

10. [B-1 1988] A composite (positive integer) is a product ab with a and b not necessarily
distinct integers in {, 2, 3, 4, ...}. Show that every composite is expressible as xy + xz + yz + 1,
with x, y, and z positive integers.

10



5 Real Analysis and differential equations

1. Suppose that f is a non-negative continuous function on R. Suppose that, for every
ϵ ∈ [0, 1), one has limn→∞f(ϵ+ n) = 0. Show by example, that limx→∞ f(x) doesn’t have to
equal zero.

For the next exercise, let us first recall the following notation. Given a real number x, let
⌊x⌋ equal the largest integer which is less than or equal to x. For instance, ⌊2.5⌋ = 2, and
⌊−3.7⌋ = −4. The quantity ⌊x⌋ is called the floor of x. We also define the fractional part of x
by {x} := x− ⌊x⌋ We note that {x} ∈ [0, 1).

2. Suppose that α is a real number.
a) If α is rational, show that the set

Xα := {{nx}|n ∈ Z}

is not dense in [0, 1).
b) If α is irrational, show that the set Xα, defined as above, is dense in [0, 1).

3. Does there exist an integer n such that the number 2n in the decimal system starts with
the digits 2022?

4. Suppose that f : R → R is a twice differentiable function such that:

f ′′(x) + f(x) = −xg(x)f ′(x)

for some non-negative function g : R → R. Show that the function f is bounded.

6. It is easy to show that if the series
∑

aj is convergent then {aj} is convergent to zero.
Show that there exists a sequence {aj} not convergent to zero, such that

n∑
⌊n
2
⌋+1

aj

is convergent as n → ∞.

7. Let f : [0, 1] → R be a continuous function satisfying xf(y) + yf(x) ≤ 1 for every
x, y ∈ [0, 1]

(a) Show that
∫ 1

0
f(x)dx ≤ π

4
.

(b) Find such a function for which equality occurs.

8. (a) For what pairs of positive real numbers (a, b) does the improper integral shown below
converges? ∫ ∞

b

(√√
x+ a−

√
x−

√√
x−

√
x− b

)
dx
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(b) For a = b = 1, show that∫ ∞

b

(√√
x−

√
x− 1−

√√
x+ 1−

√
x

)
dx =

4

15
(

√
26
√
2− 14− 2)

9. Suppose f : R → R is a two times differentiable function satisfying f(0) = 1, f ′(0) = 0

and for all x ∈ [0,∞), it satisfies

f ′′(x)− 5f ′(x) + 6f(x) ≥ 0.

Prove that, for all x ∈ [0,∞),
f(x) ≥ 3e2x − 2e3x.

10. Let y = f(x) be a continuous, strictly increasing function of x for x ≥ 0, with f(0) = 0,
and f−1 denote the inverse function of f . If a and b are nonnegative constants, then show
that

ab ≤
∫ a

0

f(x)dx+

∫ b

0

f−1(y)dy.

11. [B5-1985] For a > 0 calculate the integral∫ ∞

0

x− 1
2 e−a(x+ 1

x
)dx

You may assume that
∫∞
−∞ ex

2
dx =

√
π.

12. Let f be continuous function defined on [0, 1]. Prove that∫ 1

0

∫ 1

0

|f(x) + f(y)|dxdy ≥
∫ 1

0

|f(x)|dx.

13. For every positive integer n, set an :=
∑n

k=1
1
k4

and bn =
∑n

k=1
1

2k−1)4
. Compute

lim
n→∞

n3(
bn
an

− 15

16
)

14. Do there exist functions f : (0, 1) → R and g : (0, 1) → R such that for all x and
y ∈ (0, 1), the following two conditions are satisfied:

1. f(x) < g(x), and
2. if x < y, then g(x) < f(y) ?
Either find examples of such f and g or prove that no such functions exist. 14. Find the

volume of the ellipsoid
x2 + y2 + z2 + xy + yz + zx = 1.

12



15. [A-2 (2009)] Functions f , g, h are differentiable on some interval around 0 and satisfy the
equations and initial conditions:

f ′ = 2f 2gh+
1

gh
, f(0) = 1,

g′ = f 2gh+
1

fh
, g(0) = 1,

h′ = 3fgh2 +
1

fg
, h(0) = 1.

Find an explicit formula for f(x), valid in some open interval around 0. Hint: Get and
equation only in terms of f ′

f
, g′

g
, and h′

h
.

16. [Problem 12340 (AMM 2022 August-September) ] Let g : [0, 1] → R be a continuous

function.

lim
n→∞

n

2n

∫ 1

0

g(x)

xn + (1− x)n
dx = Cg(1/2). (6)

for some constant C (independent of g) and determine the value of C.

17. [A-5 2005] Evaluate ∫ 1

0

ln(x+ 1)

1 + x2
dx.

18. [B-1 1987] Evaluate ∫ 4

2

√
ln(9− x)√

ln(9− x) +
√

ln(x+ 3)
dx.

19. [A-1 1986] Find, with explanation, the maximum value of f(x) = x3 − 3x on the set of all
real numbers x satisfying

x4 + 36 ≤ 13x2.

20. [A-2 1986] Evaluate
∑∞

n=0Arccot(n
2+n+1), where Arccot t for t ≥ 0 denotes the number

θ in the interval 0 < θ ≤ π
2
with cot θ = t.
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21. [A-2 1988] A not uncommon calculus mistake is to believe that the product rule for deriva-
tives says that (fg)′ = f ′g′. If f(x) = ex

2
, determine, with proof, whether there exists an open

interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true
for x in (a, b).

22. [B-1 1990] Find all real valued continuously differentiable functions f on the real line such
that for all x,

f(x)2 =

∫ x

0

[f(t)2 + f ′(t)2]dt+ 1990.

23. [A-1 2006] Find the volume of the region R of points (x, y, z) such that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2).

Region R (figure not provided on the test)

24. [A-1 2000] Let A be a positive real number. What are the possible values of
∑∞

j=0 x
2
j , given

that x0, x1, ... are positive numbers for which
∑

j=0 xj = A ?

25. [B-6 2006] Let k be an integer greater than 1. Suppose a0 > 0, and define

an+1 = an +
1

k
√
an

for n > 0. Evaluate

lim
n→∞

ak+1
n

nk
.

26. Let f(x) =
∑∞

n=1
| sinnx|

n2 . Prove that

lim
x→0+

f(x)

x lnx
= −1. (7)
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27. Let r be a positive real number. Evaluate

I :=

∫ ∞

0

xr−1

(1 + x2)(1 + x2r)
dx. (8)

28. Evaluate

L := lim
n→∞

lnn1/3 ln(n+ 3)∑
1≤i<j≤n

1
ij
.

(9)

29. Evaluate

I :=

∫ 1

0

sinx sin πx

cos 2x−1
2

dx. (10)

30. Let Hn =
∑n

k=1
1
k
. Evaluate

S :=
∞∑
n=1

Hn+2

n(n+ 1)
. (11)

6 Functional Equations

1. (i) Suppose f : R → R is a differentiable function such that:

f(x+ y) = f(x) + f(y)

for every x and y real numbers. Show that f(x) = cx for some constant c.
(ii) If the function satisfies instead

f(x+ y) = f(x)f(y)

for every x and y real numbers, show that f(x) = ecx for some constant c, or f ≡ 0.
(iii) Suppose f : (0,∞) → R is a differentiable function such that:

f(xy) = f(x) + f(y)

for every x and y positive real numbers. Show that f(x) = c lnx for some constant c.
(iv) Suppose f : (0,∞) → R is a differentiable function such that:

15



f(xy) = f(x)f(y)

for every x and y positive real numbers. Show that f(x) = xc for some constant c.
(v) The conclusion in all statements above follows if f is only assumed continuous.

2. Suppose that f and g are two real-valued functions defined on the whole real line, such
that for all x and y

f(x+ y) = f(x)f(y)− g(x)g(y) and

g(x+ y) = f(x)g(y) + g(x)f(y).

Knowing that f ′(0) = 0 show that f(x)2 + g(x) = 1 for all x.

3. Find all functions : (0,∞) → (0,∞) such that

f(kx+ f(y)) =
y

k
f(xy + 1) (12)

for all x and y in (0,∞), where k > 0 is a real and fixed parameter.

4. [A1 1992] Find all functions f : Z → Z such that:
(i) f(f(k)) = k,
(ii) f(f(k + 2) + 2) = k, and
(iii)f(0) = 1

for all integers k.

5. [B3-2005] Find all differentiable functions f : (0,∞) → (0,∞) for which there is a
positive real number a such that

f ′(
a

x
) =

x

f(x)

for all x > 0.

6. Crux Proposed by Ivan Hadinata. Find all functions f : R → R such that the

equation

f(xy + f(f(y)) = xf(y) + y (13)

holds for all real numbers x and y.

7. Monthly For fixed p ∈ R, find al function f : [0, 1] → R that are continuous

at 0 and 1 and satisfy

f(x2) + 2pf(x) = (x+ p)2 (14)

for all x ∈ [0, 1].
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7 Algebra

1. Find the minimum value of the expression:

(x+ 1
x
)6 − (x6 + 1

x6 )− 2

(x+ 1
x
)3 + (x3 + 1

x3 )

for x > 0.

2. (i) Prove the Lagrange’s identities:

(a2 + b2)(u2 + v2) = (au+ bv)2 + (av − bu)2

(a2 + b2 + c2)(u2 + v2 + w2) = (au+ bv + cw)2 + (av − bu)2 + (aw − cu)2 + (bw − cv)2

and more general

(
n∑

k=1

a2k)(
n∑

k=1

b2k) = (
n∑

k=1

akbk)
2 +

∑
i<j

(aibj − ajbi)
2.

(ii) Prove Cauchy’s Inequality:

(
n∑

k=1

a2k)(
n∑

k=1

b2k) ≥ (
n∑

k=1

akbk)
2.

(iii) Show that the Diophantine equation x2y2 + y2z2 + z2x2 = w2 (x, y, z, w ∈ Z) has
infinitely many solutions. Hint: Use the identity

(ab)2 + (ab+ a)2 + (ab+ b)2 = (a2 + ab+ b2)2.

4. Let G be a finite group, and suppose that for any subgroups H and K of G, we have

|H ∪K| = gcd(|H|, |K|).

Prove that G is cyclic.

5. Prove that if
11z10 + 10iz9 + 10iz − 11 = 0

then |z| = 1. (Here z is a complex number and i2 = −1.) Hint: Show that there are 10
roots on the circle already.

6. A Gaussian integer is a complex number z such that z = a = bi for integers

a and b. Show that every Gaussian integer can be written in at most one way as
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a sum of distinct powers of 1+i, and that the Gaussian integer z can be expressed

as such a sum if and only if i− z cannot.

7. Find a nonzero polynomial P (x, y) such that P (⌊a⌋, (⌊2a⌋) = 0 for all real numbers a. (Note:
⌊x⌋ is the greatest integr lass than or equal to x.)

8. [B-2 1986] Prove that there are only a finite number of possibilities for the ordered triple
T = (x − y, y − z, z − x), where x, y and Z are complex numbers satisfying the simultaneous
equations

x(x− 1) + 2yz = y(y − 1) + 2zx = z(z − 1) + 2xy,

and list all such triples T .

9. [A-2 1986] What is the units digit of⌊
1020000

10100 + 3

⌋
?

10. [A-1 1987] Curves A, B, C and D are defined in the plane as follows:

A = {(x, y) : x2 − y2 =
x

x2 + y2
},

B = {(x, y) : 2xy + y

x2 + y2
= 3},

C = {(x, y) : x3 − 3xy2 + 3y = 1},

D = {(x, y) : 3x2y − 3x− y3 = 0}.

Prove that A ∩B = C ∩D.
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11. [B-3 1987] Let F be a field in which 1 + 1 ̸= 0. Show that the set of solutions to the
equation x2 + y2 = 1 with x and y in F is given by (x, y) = (1, 0) and

(x, y) =

(
r2 − 1

r2 + 1
,

2r

r2 + 1

)
where r runs through the elements of F such that r2 ̸= −1.
Bonus: Show that the map above is 1−1 and calculate how many pairs are in Zp with p prime.

12. [A-1 1988] Let R be the region consisting of the points (x, y) of the cartesian plane satisfying

|x| − |y| ≤ 1 and |y| ≤ 1.

Sketch the region R and find its area.

13. [B-2 1989] Let S be a non-empty set with an associative operation that is left and right
cancellation (xy = xz implies y = z and yzx implies y = z). Assume that for every a in S the
set {an : n = 1, 2, 3, ...} is finite. Must S be a group ?

14. Show the identities

x3 + y3 + z3 − 3xyz = (x+ y + z)(x2 + y2 + z2 − xy − xz − yz),

x2 + y2 + z2 − xy − xz − yz =
1

2
[(x− y)2 + (y − z)2 + (z − x)2].
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15. [B1-2005] Show that the curve x3 + 3xy + y3 = 1 contains only one set of three distinct
points, A, B, and C, which are vertices of an equilateral triangle, and find its area.

16. [A1-2019] Determine all possible values of the expression

A3 +B3 + C3 − 3ABC

where A, B and C are non-negative integers.

8 Set Theory

1. Can a countably infinite set have an uncountable collection of non-empty subsets such
that the intersection of any two of them is finite ?
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